matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisnichtlinearer Operator
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - nichtlinearer Operator
nichtlinearer Operator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtlinearer Operator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:28 Fr 30.11.2007
Autor: Denny22

Aufgabe
Seien [mm] $f:\IR^p\longrightarrow\IR^p$ [/mm] 2-mal stetig diffbar, [mm] $u:\IR^d\longrightarrow\IR^p$ [/mm] stetig diffbar und [mm] $F:H_0^1(\Omega)\longrightarrow L^2(\Omega)$ [/mm]  ein nichtlinearer stetiger Operator mit $F(u)(x):=f(u(x))$. Man zeige:

F ist beschränkt, d.h. [mm] $\Vert{F(u)}\Vert_{L^2}\leqslant C\Vert{u}\Vert_{H^1}$ [/mm]

Hallo an alle,

Wie zeigt man genau, dass der NICHTLINEARE Operator $F$ beschränkt ist. Die Äquivalenz "$F$ stetig [mm] $\Longleftrightarrow$ [/mm] $F$ beschränkt" gilt ja nur für lineare Operatoren. Man muss also irgendwie mit der Stetigkeit oder Differenzierbarkeit an die Sache ran gehen, denke ich.

Wäre echt klasse, wenn mir jemand weiterhelfen könnte. Ich bin mir sicher, dass dies ein Einzeiler ist.

Vielen Dank bereits im Vorraus

P.S.: Ich habe diese Fragen in keinem anderen Forum und auf keiner anderen Internetseite gestellt.

        
Bezug
nichtlinearer Operator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:25 Sa 01.12.2007
Autor: Denny22

Kann man die Aussage mithilfe vom "Satz über abgeschlossenen Graphen" eventuell zeigen? Fordert dieser Satz nicht auch die Linearität des Operators?

Wäre schön, wenn jemand weiter wüsste.

Gruß

Bezug
                
Bezug
nichtlinearer Operator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Mo 03.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
nichtlinearer Operator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Mo 03.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]