matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebranoethersche Ringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - noethersche Ringe
noethersche Ringe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noethersche Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 27.11.2017
Autor: questionpeter

Aufgabe
Welche der folgende Ringe [mm] R_i [/mm] sind noethersch?

(i) [mm] R_1=\lbrace \bruch{a}{b}\in Quot(\IC[x]) [/mm] | [mm] b(x)\neq [/mm] 0 für [mm] |z|=1\rbrace [/mm]

(ii) [mm] R_2=\lbrace f\in \IC\lbrace x\rbrace [/mm] | f hat unendlichen [mm] Konvergenzradius\rbrace [/mm]

(iii) [mm] R_3 =\lbrace f\in \IC[x] [/mm] | [mm] \bruch{\partial^if}{\partial x^i}(0)=0 [/mm] für i=1,...,k [mm] \rbrace [/mm] k fest


Guten Abend zusammen,

in der VL haben wir folgendes zu noethersch definiert:

Sei R Ring. Dann sind folgende Aussagen äquivalent

(i) R erfüllt die aufsteigende Kettenbedingung für Ideale: Für jede aufsteigende Kette [mm] I_1\subseteq I_2\subseteq I_3\subseteq... [/mm] von Idealen [mm] I_j\subseteq [/mm] A [mm] (j\in\IN) [/mm] gibt es ein [mm] k\in\IN [/mm] mit [mm] I_l=I_k \forall l\leq [/mm] k, d.h. die Kette wird stationär.

(ii)  Jede nichtleere Menge S von Idealen in R hat mind. Ein maximales Element.
(iii)  Jedes Ideal I in R ist endlich erzeugt (als R-Modul), d.h. [mm] \exists n\in\IN, a_1,...,a_n \in [/mm] R mit [mm] I=(a_1,...,a_n) [/mm]

Wenn eine (und damit jede) der obigen Aussagen erfüllt ist, so nennt man R einen noetherschen Ring.

Wie kann ich anhand diese Aussagen diese Aufgabe lösen? Bzw gibt es da eine anderen Weg?

        
Bezug
noethersche Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Di 28.11.2017
Autor: UniversellesObjekt

In (i) soll es wohl [mm] $b(z)\not=0$ [/mm] für $|z|=1$ heißen? Dann bilden diese $b$s eine multiplikative Menge und der Ring ist eine Lokalisierung von [mm] $\IC[x]$. [/mm]

(ii) Was soll [mm] $\IC\{x\}$ [/mm] sein? Der Ring der Puiseux-Polynome?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 28m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 1h 36m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 10h 40m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 3h 33m 3. Dom_89
SDiffRech/Ableitung bilden
Status vor 1d 10h 32m 6. Dom_89
SIntRech/Partielle Integration/Substitu
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]