matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numeriknorm,kondition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - norm,kondition
norm,kondition < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

norm,kondition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Fr 29.05.2009
Autor: AriR

hey leute,

unser tutor hat folgendes an die tafel geschrieben:

Sei X ein Banachraum [mm] S:X\to [/mm] X ist wohldefiniert, wenn  S(x) für ein [mm] x\in [/mm] X wieder in X liegt. Soweit so gut.

und dies wurde dann folgendermaßen gezeigt: Man hat gezeigt, dass die norm von S kleiner unendlich ist und direkt gefolgert, dass somit [mm] S(x)\in [/mm] X für alle [mm] x\in [/mm] X

diesen schritt habe ich nicht so ganz verstanden. Warum kann ich aus [mm] ||S||<\infty [/mm] folgern, dass [mm] S(x)\in [/mm] X für alle X?? warum liegt S(x) möglicherweise nicht in X wenn [mm] ||S||=\infty? [/mm]

wäre für eine erklärung sehr dankbar

        
Bezug
norm,kondition: Idee
Status: (Antwort) fertig Status 
Datum: 12:26 Fr 29.05.2009
Autor: generation...x

Ich vermute mal, S ist ein linearer Operator? Wenn dann die Norm von S [mm] <\infty, [/mm] dann ist S auch stetig. Wenn ich also ein bestimmtes [mm] x_0 [/mm] als Grenzwert einer Folge in X darstellen kann (und das kann ich mit jedem), dann konvergiert auch die Folge der Funktionswerte eindeutig gegen den Funktionswert [mm] S(x_0). [/mm]

Für den Fall, dass die Norm von S nicht [mm] <\infty [/mm] müsste man ein Gegenbeispiel finden können, mir fällt aber gerade keines ein.

Bezug
        
Bezug
norm,kondition: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Fr 29.05.2009
Autor: fred97

Das ist ja völlig verworren !! ?

Zuerst hat man die Abbildung $ [mm] S:X\to [/mm] $ X (ich nehme an , sie ist linear) und dann stellt sich erst die Frage, ob S beschränkt, also stetig , also

                 $||S|| = sup [mm] \{ ||Sx||: ||x||=1 \} [/mm] < [mm] \infty$ [/mm]

ist.


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]