matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastiknormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - normalverteilung
normalverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mo 14.01.2008
Autor: mickeymouse

Aufgabe
berechne  [mm] \sum_{i=0}^{25} [/mm] B(50;0,5;i) nach der integralen näherungsformel!  

das berechnet man doch mit
[mm] \phi(\bruch{k_2-\mu+0,5}{\wurzel{varianz}} [/mm] - [mm] \phi(\bruch{k_1-\mu-0,5}{\wurzel{varianz}} [/mm]
oder?
[mm] \mu [/mm] ergibt sich ja aus n*p= 25 und die standardabweichung aus [mm] \wurzel{12,5} [/mm]
dann muss ich einsetzen und im tafelwerk nach den werten von [mm] \phi [/mm] an den stellen 0,14... und -7,21... suchen...aber der wert -7,21 ist nicht angegeben!
hab ich mich verrechnet oder ist überhaupt alles falsch?

danke...:)

ach ja, das ergebnis müsste sein: 55,6%

        
Bezug
normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mo 14.01.2008
Autor: Zwerglein

Hi, mickeymouse,

> berechne  [mm]\sum_{i=0}^{25}[/mm] B(50;0,5;i) nach der integralen
> näherungsformel!
> das berechnet man doch mit
>  [mm]\phi(\bruch{k_2-\mu+0,5}{\wurzel{varianz}}[/mm] -  [mm]\phi(\bruch{k_1-\mu-0,5}{\wurzel{varianz}}[/mm]
>  oder?

Da die Summe bei i=0 beginnt, kannst Du das vereinfachen:
[mm] \sum_{i=0}^{25} [/mm] B(50;0,5;i) [mm] \approx[/mm]  [mm]\phi(\bruch{k_2-\mu+0,5}{\wurzel{varianz}})[/mm] = [mm] \Phi(0,14) [/mm]

mfG!
Zwerglein

Bezug
        
Bezug
normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:43 Di 15.01.2008
Autor: luis52


>  dann muss ich einsetzen und im tafelwerk nach den werten
> von [mm]\phi[/mm] an den stellen 0,14... und -7,21... suchen...aber
> der wert -7,21 ist nicht angegeben!

Hallo,

[mm] $\Phi(-7.21)\approx0$ [/mm]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]