matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlennte Einheitswurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - nte Einheitswurzeln
nte Einheitswurzeln < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nte Einheitswurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 21.02.2012
Autor: Infoandi

Aufgabe
Es sei [mm] z_{0} [/mm] jeweils eine Lösung der angegebenen Gleichung und a fest, a [mm] \in \IC. [/mm] Ermitteln Sie alle weiteren Lösungen.
[mm] z^{4}+2-i=a, z_{0}=2+3i [/mm]

Hallo erstmal,

ich sitz seit gestern, an dieser Aufgabe, da ich irgendwie auf kein vernünftiges Argument komme. Angefangen hab ich so:
[mm] z_{0} [/mm] in die Gleichung eingesetzt und a bestimmt. Danach die Gleichung [mm] z^{4}+2-1=a [/mm] nach [mm] z^{4} [/mm] umgestellt und hatte somit [mm] z^{4}=-119-120i. [/mm] Dann habe ich den Betrag bestimmt mit [mm] r=\wurzel{(-119)^{2}+(-120)^{2}} [/mm] das ergibt r=169. Wenn ich jetzt aber das Argument mit [mm] tan^{-1}(\bruch{-120}{-119}) [/mm] berechnen will kommt da mumpitz raus, oder zu mindestens kann ich damit nichts anfangen. Eigentlich müsste ich dann noch das Argument mit [mm] \bruch{3}{2}\pi [/mm] ergänzen, da wir uns ja mit -x-yi im dritten Quadranten befinden.

Mal ganz davon abgesehn, dass wir in der Prüfung keine Taschenrechner benutzen dürfen, was die Aufgabe noch Zeitaufwendiger macht. Berechne ich das Argument falsch oder muss ich da vielleicht ganz anderes ran gehen ?
danke im voraus für die Hilfe.
grüße andi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nte Einheitswurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 21.02.2012
Autor: donquijote

Das geht viel einfacher:
Du hast eine Gleichung der Form [mm] z^4=a-2+i [/mm] und eine gegebene Lösung [mm] z_0. [/mm]
Die anderen 3 Lösungen sind dann [mm] \pm i*z_0 [/mm] und [mm] -z_0, [/mm] dazu brauchst du noch nicht einmal a zu berechnen.

Bezug
                
Bezug
nte Einheitswurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 21.02.2012
Autor: Infoandi

und wie erkenne ich, dass ich einfach [mm] z_{0} [/mm] * i nehmen muss ?
Wegen n=4 ? Und wie ich kann ich das auf andere Aufgaben ausweiten bei n=8 [mm] z_{0}* [/mm] 0,5i ?

aber danke schonmal für die schnelle Beantwortung

Bezug
                        
Bezug
nte Einheitswurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Di 21.02.2012
Autor: donquijote


> und wie erkenne ich, dass ich einfach [mm]z_{0}[/mm] * i nehmen muss
> ?
>  Wegen n=4 ? Und wie ich kann ich das auf andere Aufgaben
> ausweiten bei n=8 [mm]z_{0}*[/mm] 0,5i ?
>  
> aber danke schonmal für die schnelle Beantwortung

Allgemein unterscheiden sich die verschiedenen Lösungen der Gleichung [mm] z^n=b [/mm] jeweils durch eine n-te Einheitswurzel. Sind nämlich [mm] z_0 [/mm] und [mm] z_1 [/mm] zwei Lösungen, so gilt [mm] \left(\frac{z_1}{z_0}\right)^n=\frac{b}{b}=1. [/mm]
Im Fall n=4 sind die vierten Einheitswurzeln (Lösungen der Gleichung [mm] w^4=1) [/mm] gerade [mm] \pm [/mm] 1 und [mm] \pm [/mm] i, für zwei Lösungen der ursprünglichen Gleichung gilt somit [mm] \frac{z_1}{z_0}\in\{\pm 1,\pm i\} [/mm]
Allgemein haben die n-ten Einheitswurzeln die Form [mm] e^{i*2\pi*k/n} [/mm] mit k=0,...,n-1, für n=8 sind dies z.B
[mm] \pm [/mm] 1, [mm] \pm [/mm] i und [mm] \pm\frac{1}{\sqrt{2}}*(1\pm [/mm] i)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]