matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionennullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - nullstellen
nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 26.10.2007
Autor: Sternchen0707

eigentlich eine ganz einfache frage... Aber leider nicht für mich :(

Woran erkennen ich wie viele Nullstellen eine Funktion hat?
Also mir ist schon klar, dass eine Funktion 2. Gerades maximal 2 nullstellen hat und eine Funktion 3. Grades maximal 3 und so auch bein 4. Grad.

Wenn ich aber nun die funktion f(x)=x²+3 habe,... woran erkenne ich das diese Funktion keine nullstellen hat. Also klar ich könnte das ausrechnen aber wie erkennt man das sofort??

Danke für jede hilfreiche Antwort ;)

        
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Fr 26.10.2007
Autor: Sternchen0707

Ok. das beispiel war schlecht... weil man keine Wurzel aus -3 ziehen kann. Aber was ist mit f(x)=x²-6x+9 ???
Diese funktion hat nur eine Nullstelle, woran erkenn ich das?

Bezug
                
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Fr 26.10.2007
Autor: Lord_Exo

in dem du die pq Formel anwendes und das ganze dann offensichtlich wird.

x1,2= -(p/2) [mm] +-\wurzel{(p/2)^{2}-q} [/mm]

für deine Gleichung ist die Lösung = 3. probiers aus

Bezug
        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 26.10.2007
Autor: leduart

Hallo
bei quadratischen fkt. kann man das noch ziemlich leicht erkennen:
wenn man f(x) als [mm] f(x)=(x-a)^2+b [/mm] hat, ist [mm] (x-a)^2 [/mm] immer größer oder gleich 0, es hat also nur Nullstellen, wenn b 0 ist, dann eine und wenn b<0 ist zwei.
bei den anderen Funktionen geht das nicht so leicht, es sei denn man kann sie in ein Produkt zerlegen.
bei fkt. ungeraden Grades weiss man, dass sie mindestens Eine Nullstelle haben, denn für sehr große x ist imme der Teil mit [mm] x^3 [/mm] oder [mm] x^5 [/mm] usw, der größte, der ist für positive x positiv, für negative negativ, also weiss man dass die fkt irgendwo negativ und irgendwo pos. ist, also hat sie sicher eine Nulstelle, aber mehr weiss man nicht!
und man kann auch wenn die fkt nicht ne besondere Form wie etwa
[mm] f(x)=(x-a)*((x-b)^2+c) [/mm] hat oder man sie so umformen kann   nix genaueres nicht sagen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]