matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisnullstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - nullstellen
nullstellen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:24 So 20.02.2005
Autor: Anna17

also ich habe diese funktion:
f(x)= [mm] x^{3}-4,9x^{2}-0,56x+15,744 [/mm]

ich weiß zwar,dass ich die nullstellen mit hilfe der polynomdivision berechnen kann, weiß aber leider nicht mehr wie das ging... bitte helft mir..


        
Bezug
nullstellen: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:55 So 20.02.2005
Autor: MathePower

Hallo,

zunächst musst Du eine Nullstelle raten. Sei es durch probieren oder irgendein Näherungsverfahren wie Regula Falsi, Newton, Intervallhalbierung.

Um nun die weiteren Nullstellen zu finden, wird das Polynom durch [mm]x-x_{0}[/mm] geteilt. Dadurch wird der Grad des Polynoms um 1 erniedrigt. Hier ist [mm]x_{0}[/mm] die gefundene Nullstelle.

Im vorliegenden Fall bedeutet das dann, daß die Nullstellen von dem so erhaltenen Polynom 2. Grades ermitteln muß.  Was aber kein großes Problem darstellt.

Gruß
MathePower


Bezug
        
Bezug
nullstellen: tipp
Status: (Antwort) fertig Status 
Datum: 18:57 So 20.02.2005
Autor: hobbymathematiker

Hallo Anni

Du hast schon recht die Aufgabe sieht ätzend aus.

Aber sie ist lösbar.

[mm](x-2)(x-1)(x+1)=x^3 - 2\cdot{}x^2 - x + 2[/mm]


Versuch doch mal mit obiger aufgabe zu üben.
Sie ist überschaubar und du kennst die Lösung.

Dann löst du deine Aufgabe leicht nach dem gleichen Prinzip. ;-)

Das schwierigste ist die erste Nullstelle zu finden.

Wie solltet ihr das machen?

Gruss
Eberhard



Bezug
        
Bezug
nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 20.02.2005
Autor: Anna17

ich hab das jetzt versucht nocheimal auszurechnen... ist [mm] x^2-2,5x+ [/mm] 6,56 richtig?

Bezug
                
Bezug
nullstellen: Nicht ganz richtig
Status: (Antwort) fertig Status 
Datum: 20:14 So 20.02.2005
Autor: MathePower

Hallo,

das Restpolynom sieht so aus

[mm]x^{2} \; - \;2,5x\; - \;6,56[/mm]

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]