matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesnullstellen m. produktnullsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - nullstellen m. produktnullsatz
nullstellen m. produktnullsatz < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen m. produktnullsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mo 08.01.2007
Autor: maresi1

Aufgabe
ermittle die nullstellen der polynomfunktion

[mm] y=\bruch{3}{4}x^5 [/mm] + [mm] \bruch{2}{3}x³=0 [/mm]

mittles produkt null satz

hallo,

könnte mir jemand hierbei helfen? nicht nur dass die brüche mir irritieren, aber auch der produkt null satz ist mir irgendwie nicht geläufig.

danke lg!

        
Bezug
nullstellen m. produktnullsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 08.01.2007
Autor: mathemak


> ermittle die nullstellen der polynomfunktion
>
> [mm]y=\bruch{3}{4}x^5[/mm] + [mm]\bruch{2}{3}x³=0[/mm]
>  
> mittles produkt null satz
>  hallo,
>  

"Satz vom Nullprodukt": Ein Produkt reeller Zahlen ist genau dann Null, wenn (mindestens) ein Faktor Null ist.

Der Satz gilt, weil [mm] \IR [/mm] eine nullteilerfreie (Divisions)algebra ist. Aus $x*y=0$ folgt sofort, dass $x=0$ oder $y=0$ ist.

Wenn Du ähnliches mit Matrizen versucht, geht das nicht.

Zur Aufgabe:

[mm] \bruch{3}{4}x^5+ \bruch{2}{3}x^3=0 [/mm]

Ist erstmal eine Summe. Um den Satz vom Nullprodukt anwenden zu können, muss daraus ein Produkt werden, also ausklammern:

[mm] $x^3 \left( \bruch{3}{4}\,x^2 + \frac{2}{3} \right) [/mm] = 0 $

oder

[mm] $\frac{3}{4}\,x^3 \left( x^2 + \bruch{8}{9} \right) [/mm] = 0$

und damit gilt $x=0 [mm] \;\vee x^2 [/mm] + [mm] \frac{8}{9} [/mm] = 0$

Jetzt kommt es auf die Grundmenge an: vermutlich [mm] \IR, [/mm] da Du [mm] $y=\ldots$ [/mm] geschrieben hast.

$x=0$ ist einzige Lösung, dafür aber dreifach, d.h. die Parabel 5. Ordnung hat dort einen Sattelpunkt.

Aber bitte:

[mm] $x^5 [/mm] - [mm] x^3 [/mm] - [mm] x^2 [/mm] = 54$

Bitte nicht mit dem Satz vom 54-Produkt lösen und

[mm] $x^2\,(x^3 [/mm] - x - 1 )=54$ rechnen.

Das wäre so nicht richtig, wird aber immer wieder gemacht.

Zielführend ist das nur, wenn anschließend ein Iterationsverfahren durchgeführt wird.

Grüße

mathemak



Bezug
                
Bezug
nullstellen m. produktnullsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Mo 08.01.2007
Autor: maresi1

ich dank dir für deine ausführliche erklärung!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]