matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenoffene Mengen\ Metriken
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - offene Mengen\ Metriken
offene Mengen\ Metriken < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Mengen\ Metriken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Do 29.07.2010
Autor: vierg

Aufgabe
Sei (X,d) ein metrischer Raum. Man zeige, dass die Abbildung
m:X x X->R, m(x,y):=min(d(x,y),1),
eine Metrik auf X ist und dass die Metriken d und m die selben offenen Mengen auf X definieren.

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe hier eine Aufgabe aus dem Forster Ana 2.
Das m eine Metrik ist hab ich schon gezeigt.
Aber bei dem zweiten Teil der Aufgabe komme ich nicht so ganz weiter.

Ich nehme mir also eine offene Menge U bzgl. m her. Dann ex. ja ein [mm] \varepsilon>0 [/mm] s.d. [mm] B\varepsilon(a) [/mm] Teilmenge dieser offenen Menge ist, für alle [mm] a\in [/mm] U. Nun muss ich doch aber eine Fallunterscheidung machen, oder?
Wenn [mm] \varepsilon< [/mm] 1 ist, dann ist die Umgebung [mm] B'\delta(a) [/mm] bzgl.  d mit [mm] \delta=\varepsilon [/mm] auch Teilmenge von U. Aber wenn [mm] \varepsilon>=1 [/mm] ist, dann ist [mm] B\varepsilon(a) [/mm] bzgl. m ja der ganze Raum, oder? Kann ich dann [mm] \delta [/mm] einfach unendlich setzen oder wie?

mfg
vierg

        
Bezug
offene Mengen\ Metriken: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 29.07.2010
Autor: Gonozal_IX

Huhu,

nicht so kompliziert denken :-)
Existiert ein [mm] $\varepsilon [/mm] > 1$, so dass [mm] $B_\varepsilon(a)$ [/mm] komplett in U liegt, so gilt es doch insbesondere auch für jedes [mm] $\varepsilon [/mm] < 1$
Und da dir die Existenz eines [mm] \varepsilon [/mm]  ausreicht, nimmst du dir einfach nur eins kleiner 1.

D.h. du kannst einfach argumentieren: Sei U offen, dann existiert oBdA [mm] $\varepsilon [/mm] < 1$..... etc

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]