p-adische Darstellung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:22 Sa 13.08.2011 | Autor: | erisve |
Aufgabe | Ein Bruch hat die p-adische Darstellung:
[mm] \summe_{i=-m}^{\infty} a_{i}p^{i} [/mm] mit m [mm] \in \IZ
[/mm]
Meine Frage: Warum geht es nach oben hin ins Unendliche, wenn es ein periodischer Bruch ist müsste es doch eher im Minusbereich ins Unendliche gehen , oder? |
Ich versuche grad die p-adische Entwicklung von Brüchen aufzustellen, das ist mir allerdings unklar...
|
|
|
|
Hallo erisve,
> Ein Bruch hat die p-adische Darstellung:
> [mm]\summe_{i=-m}^{\infty} a_{i}p^{i}[/mm] mit m [mm]\in \IZ[/mm]
>
> Meine Frage: Warum geht es nach oben hin ins Unendliche,
> wenn es ein periodischer Bruch ist müsste es doch eher im
> Minusbereich ins Unendliche gehen , oder?
Du hast Recht, die obige Darstellung stimmt nicht.
Steht das so im Skript?
> Ich versuche grad die p-adische Entwicklung von Brüchen
> aufzustellen, das ist mir allerdings unklar...
Schaus Dir doch einfach mal 10-adisch an, also dezimal.
Oder berechne die 3-adische Darstellung von 9/5 (bzw. [mm] 100_3/12_3, [/mm] um genau zu sein).
Grüße
reverend
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:27 So 14.08.2011 | Autor: | felixf |
Moin!
> Ein Bruch hat die p-adische Darstellung:
> [mm]\summe_{i=-m}^{\infty} a_{i}p^{i}[/mm] mit m [mm]\in \IZ[/mm]
>
> Meine Frage: Warum geht es nach oben hin ins Unendliche,
> wenn es ein periodischer Bruch ist müsste es doch eher im
> Minusbereich ins Unendliche gehen , oder?
Nein, das stimmt schon. Es gibt zwei verschiedene Dinge, die als $p$-adische Entwicklung bezeichnet werden:
* einmal das, was fuer $p = 10$ die Dezimalentwicklung ist; das ist auch das was du meinst, wenn du bis minus Unendlich gehen willst; siehe hier;
* dann gibt es die $p$-adischen Zahlen mit $p$ einer Primzahl: das ist die Vervollstaendigung der rationalen Zahlen entlang der $p$-adischen Bewertung. Siehe hier.
Hier geht es um die $p$-adischen Zahlen im Zahlentheoretischen Sinn mit $p$ einer Primzahl. Man kann jede $p$-adische Zahl [mm] $\neq [/mm] 0$ eindeutig schreiben als [mm] $\sum_{i=-m}^{\infty} a_i p^i$ [/mm] mit [mm] $a_i \in \{ 0, 1, \dots, p - 1 \}$ [/mm] und $m [mm] \in \IZ$, $a_{-m} \neq [/mm] 0$; dies liegt u.a. daran, dass [mm] $p^i \to [/mm] 0$ fuer $i [mm] \to +\infty$ [/mm] in der $p$-adischen Topologie -- im Gegensatz zur normalen Topologie, in der [mm] $p^i$ [/mm] gegen [mm] $+\infty$ [/mm] divergiert.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:05 So 14.08.2011 | Autor: | erisve |
Danke,
du hast Recht, zwischen diesen beiden Darstellungen sollte ich unterscheiden...
nun überlege ich wie ich dies am besten in meine Bachlorarbeit einbringe,
ich habe grad Hensels Analogien beschrieben, er suchte eine analoge Darstellung zu der Laurentreihe der Polynome [mm] \summe_{i>n_{0}}^{}a_{i}(X-\alpha)^{i} [/mm] für die rationalen Zahlen.
Sollte ich nun gleich zu der "richtigen" p-adischen Entwicklung übergehen, denn die andere Schreibweise würde ja unten auch gar nicht bei [mm] n_{0} [/mm] beginnen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:36 Mo 15.08.2011 | Autor: | felixf |
Moin!
> du hast Recht, zwischen diesen beiden Darstellungen sollte
> ich unterscheiden...
Ja, das ist sehr wichtig :)
> nun überlege ich wie ich dies am besten in meine
> Bachlorarbeit einbringe,
> ich habe grad Hensels Analogien beschrieben, er suchte eine
> analoge Darstellung zu der Laurentreihe der Polynome
> [mm]\summe_{i>n_{0}}^{}a_{i}(X-\alpha)^{i}[/mm] für die rationalen
> Zahlen.
> Sollte ich nun gleich zu der "richtigen" p-adischen
> Entwicklung übergehen, denn die andere Schreibweise würde
> ja unten auch gar nicht bei [mm]n_{0}[/mm] beginnen
Ich wuerde erst beide Schreibweisen beschreiben. Fuer natuerliche Zahlen stimmen sie ja auch ueberein. (Nur sonst nicht; die -1 in der 2-adischen Darstellung ist etwa ....111111111; dies sieht man mit der geometrischen Reihe, da [mm] $\sum_{i=0}^\inty 2^i [/mm] = [mm] \frac{1}{1 - 2} [/mm] = -1$ ist.)
Die beiden Darstellungssysteme erweitern die natuerlichen Zahlen auf zwei verschiedene Weisen:
* beim Stellensystem erhaelt man [mm] $\IR$, [/mm] also die Vervollstaendigung [mm] $\IQ$ [/mm] bzgl. des normalen Betrags; hier ist es auch egal, welche Basis man dem Stellenwertsystem zugrunde legt;
* bei der $p$-adischen Darstellung erhaelt man die $p$-adischen Zahlen [mm] $\IQ_p$; [/mm] diese sind die Vervollstaendigung von [mm] $\IQ$ [/mm] bzgl. des $p$-adischen Betrags.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:18 Mo 15.08.2011 | Autor: | erisve |
Aufgabe | wenn man z.B den Bruch [mm] \bruch{1}{9} [/mm] in der Basis p=2 entwickeln soll, |
ist das dann in beiden der oben genannten Darstellungen
0,001110011100111... ?
oder gibt es da einen Unterschied?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:29 Mo 15.08.2011 | Autor: | felixf |
Moin!
> wenn man z.B den Bruch [mm]\bruch{1}{9}[/mm] in der Basis p=2
> entwickeln soll,
> ist das dann in beiden der oben genannten Darstellungen
> 0,001110011100111... ?
Das sieht eher nach [mm] $\frac{2}{9}$ [/mm] aus...
Und das gilt nur im "normalen" Binaer-Stellenwertsystem. Als 2-adische Zahl macht das gar keinen Sinn, es sei denn du sagst was diese Notation sein soll. Du hast hier ja Koeffizienten von [mm] $2^n$ [/mm] fuer $n [mm] \to -\infty$, [/mm] bei 2-adischen Zahlen darf es aber nicht bis [mm] $-\infty$ [/mm] gehen (dafuer aber bis [mm] $+\infty$, [/mm] was beim Stellenwertsystem wiederum nicht erlaubt ist).
Um [mm] $\frac{1}{9}$ [/mm] in den 2-adischen Zahlen darzustellen, schreibst du erstmal [mm] $\frac{1}{9} [/mm] = [mm] 2^n \cdot \frac{a}{b}$ [/mm] mit $2 [mm] \nmid [/mm] a, b$; $a, b$ teilerfremd; und $n, a, b [mm] \in \IZ$. [/mm] Das ist hier fuer $n = 0$, $a = 1$ und $b = 9$ der Fall.
Erstmal entwickelst du [mm] $\frac{a}{b}$ [/mm] als 2-adische Zahl und verschiebst das ganze dann mit [mm] $2^n$. [/mm] Da [mm] $\frac{a}{b}$ [/mm] eine Einheit in [mm] $\IZ_2$ [/mm] (der Ring der 2-adischen Ganzzahlen) ist, kann man wie folgt vorgehen:
Zuerst bestimmt man ein [mm] $x_1 \in \IZ$ [/mm] mit [mm] $x_1 \equiv \frac{a}{b}$ [/mm] modulo [mm] $2^1$ [/mm] (oder anders geschrieben: $b [mm] \cdot x_1 \equiv [/mm] a [mm] \pmod{2}$). [/mm] Dies ist fuer [mm] $x_1 [/mm] = 1$ der Fall.
Dann benutzt du das Newton-Verfahren (vergl. auch Hensels Lemma), angewandt auf $f(x) = b x - a$; die Iterationsvorschrift ist [mm] $x_{n+1} [/mm] := [mm] x_n [/mm] - (b [mm] x_n [/mm] - a) [mm] \cdot [/mm] y$, wobei $y [mm] \equiv b^{-1} \pmod{2}$ [/mm] ist, also etwa $y = 1$. Damit hast du [mm] $x_{n+1} [/mm] = 1 - 8 [mm] x_n$. [/mm] Diese Iteration erfuellt [mm] $f(x_n) \equiv [/mm] 0 [mm] \pmod 2^n$, [/mm] oder anders gesagt [mm] $x_n \equiv \frac{a}{b} \pmod{2^n}$.
[/mm]
Hier siehst du [mm] $x_1 \equiv [/mm] 1 [mm] \pmod{2}$, $x_2 \equiv [/mm] 1 [mm] \pmod{2^2}$, $x_3 \equiv [/mm] 1 [mm] \pmod{2^3}$, $x_4 \equiv [/mm] 9 [mm] \pmod{2^4}$, $x_5 \equiv [/mm] 25 [mm] \pmod{2^5}$, $x_6 \equiv [/mm] 57 [mm] \pmod{2^6}$, $x_7 \equiv [/mm] 57 [mm] \pmod{2^7}$, $x_8 \equiv [/mm] 57 [mm] \pmod{2^8}$, $x_9 \equiv [/mm] 57 [mm] \pmod{2^9}$, $x_{10} \equiv [/mm] 569 [mm] \pmod{2^{10}}$, $x_{11} \equiv [/mm] 1593 [mm] \pmod{2^{10}}$, [/mm] ..., [mm] $x_{30} \equiv [/mm] 954437177 [mm] \pmod{2^{30}}$
[/mm]
Damit ist [mm] $\frac{a}{b} [/mm] = 1 + [mm] (2^3 [/mm] + [mm] 2^4 [/mm] + [mm] 2^5) [/mm] + [mm] (2^9 [/mm] + [mm] 2^{10} [/mm] + [mm] 2^{11}) [/mm] + [mm] (2^{15} [/mm] + [mm] 2^{16} [/mm] + [mm] 2^{17}) [/mm] + [mm] (2^{21} [/mm] + [mm] 2^{22} [/mm] + [mm] 2^{23}) [/mm] + [mm] (2^{27} [/mm] + [mm] 2^{28} [/mm] + [mm] 2^{29}) [/mm] + ...$. (Die Klammern sind zur besseren Lesbarkeit, vergleiche die Binaerdarstellung gleich.)
Und wenn du es aufschreiben willst: dann ist es $...111000111000111000111000111001$ (nach Links hin gibt es unendlich viele Stellen). Hier sieht es so aus, als wenn es [mm] $\overline{011100}1$ [/mm] ist (wobei die Wiederholungen "nach links gehen"); nun ist 011100 im Binaersystem gleich 28 im Dezimalsystem, womit im 2-adischen diese Zahl den Wert $1 + [mm] \sum_{i=0}^\infty [/mm] 28 [mm] \cdot 2^{6 \cdot i + 1}$ [/mm] hat. Und wie man sieht, ist tatsaechlich $1 + [mm] \sum_{i=0}^\infty [/mm] 28 [mm] \cdot 2^{6 \cdot i + 1} [/mm] = 1 + 2 [mm] \cdot [/mm] 28 [mm] \cdot \sum_{i=1}^\infty (2^6)^i [/mm] = 1 + 56 [mm] \cdot \frac{1}{1 - 2^6} [/mm] = 1 - [mm] \frac{56}{63} [/mm] = 1 - [mm] \frac{8}{9} [/mm] = [mm] \frac{1}{9}$. [/mm] (Die geometrische Reihe darf angewendet werden, da der 2-adische Betrag von [mm] $2^6$ [/mm] kleiner 1 ist: er ist naemlich [mm] $2^{-6}$.)
[/mm]
(Die Periodenlaenge ist hier uebrigens gleich der Ordnung von 2 in der multiplikativen Gruppe [mm] $(\IZ/9\IZ)^\ast$. [/mm] Das ist kein Zufall.)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:24 Di 16.08.2011 | Autor: | erisve |
besten dank ;)
|
|
|
|