matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriep-adische Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - p-adische Zahlen
p-adische Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-adische Zahlen: Erklärung einer Abbildung
Status: (Frage) beantwortet Status 
Datum: 10:48 Do 05.11.2009
Autor: xxhallo

Aufgabe
Darstellung negativer Zahlen und Mengen von Zahlen

Wenn man eine bestimmte Anzahl n von Stellen annimmt, lässt sich eine schematische Darstellung von ganzen Zahlen im Binärsystem (d.h. p = 2) wie folgt veranschaulichen:
[mm] -2^{n-1} * a_{n-1} + 2^{n-2} * a_{n-2} +.... + 2^1 * a_1 + 2ô * a_0 [/mm]wobei [mm] [mm] a_{n-1};a_{n-2};.....;a_0 [/mm] eine Zeichenreihe aus dem Alphabet {0;1} ist. Hier wird also der erste Summand
negiert. Dadurch sind mit einer Zeichenkette der L¨ange n nicht die Zahlen von 0 bis pn darstellbar, sondern
die Zahlen von [mm] -p^{n-1}[/mm] bis [mm] p^{n-1} [/mm]. Für n = 8 wäre somit die kleinste darstellbare Zahl -128 mit der
Binärdarstellung 10000000, die größte Zahl 127 mit der Binärdarstellung 01111111.
Betrachten wir nun folgende Mengen B [mm]\subseteq[/mm] A [mm]\subseteq[/mm] Z von Zahlen:
A = {-8;-7;-6;-5;-4;-3;-2;-1; 0; 1; 2; 3; 4; 5; 6; 7}
B = {-4;-3;-2;-1; 0; 1; 2; 3}
Sei eine Funktion f : A => B definiert wie folgt:
f(-8) = 0 f(0) = 0
f(-7) = 1 f(1) = 1
f(-6) = 2 f(2) = 2
f(-5) = 3 f(3) = 3
f(-4) = -4 f(4) = -4
f(-3) = -3 f(5) = -3
f(-2) = -2 f(6) = -2
f(-1) = -1 f(7) = -1
Welcher tiefere Sinn steckt  hinter dieser Funktion?

Ich weiß nicht, was ich mit der Funktion anfangen soll... wenn ihr eine Erklärung habt, oder auch nur einen Tipp, in welche Richtung ich denken muss, wäre ich sehr dankbar...
ich muss die Frage in einer Textdatei beantworten.. also sind keine Formeln oder Graphen nötig...


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:www.matheboard.de; www.onlinemathe.de

        
Bezug
p-adische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 So 08.11.2009
Autor: felixf

Hallo!

> Darstellung negativer Zahlen und Mengen von Zahlen
>
> Wenn man eine bestimmte Anzahl n von Stellen annimmt,
> lässt sich eine schematische Darstellung von ganzen Zahlen
> im Binärsystem (d.h. p = 2) wie folgt veranschaulichen:
>  [mm]-2^{n-1} * a_{n-1} + 2^{n-2} * a_{n-2} +.... + 2^1 * a_1 + 2ô * a_0 [/mm]wobei
> [mm][mm]a_{n-1};a_{n-2};.....;a_0[/mm] eine Zeichenreihe aus dem Alphabet [mm] $\{0;1\}$ [/mm] ist.
> Hier wird also der erste Summand
> negiert. Dadurch sind mit einer Zeichenkette der L¨ange n nicht die Zahlen
> von 0 bis pn darstellbar, sondern
> die Zahlen von [mm]-p^{n-1}[/mm] bis [mm]p^{n-1} [/mm]. Für n = 8 wäre somit
> die kleinste darstellbare Zahl -128 mit der
> Binärdarstellung 10000000, die größte Zahl 127 mit der Binärdarstellung 01111111.
> Betrachten wir nun folgende Mengen B [mm]\subseteq[/mm] A [mm]\subseteq[/mm]
> Z von Zahlen:
> A = {-8;-7;-6;-5;-4;-3;-2;-1; 0; 1; 2; 3; 4; 5; 6; 7}
> B = {-4;-3;-2;-1; 0; 1; 2; 3}
> Sei eine Funktion f : A => B definiert wie folgt:
> f(-8) = 0 f(0) = 0
> f(-7) = 1 f(1) = 1
> f(-6) = 2 f(2) = 2
> f(-5) = 3 f(3) = 3
> f(-4) = -4 f(4) = -4
> f(-3) = -3 f(5) = -3
> f(-2) = -2 f(6) = -2
> f(-1) = -1 f(7) = -1
> Welcher tiefere Sinn steckt  hinter dieser Funktion?
> Ich weiß nicht, was ich mit der Funktion anfangen soll... wenn ihr eine
> Erklärung habt, oder auch nur einen Tipp, in welche Richtung ich denken
> muss, wäre ich sehr dankbar...
> ich muss die Frage in einer Textdatei beantworten.. also sind keine Formeln oder Graphen nötig...

Nun, diese Funktion liefert zur Eingabe $-8 [mm] \le [/mm] x < 0$ den eindeutigen Wert $y [mm] \in [/mm] B$ mit $x [mm] \equiv [/mm] y [mm] \pmod{8}$: [/mm] sie lassen den selben Rest bei Division mit 8.

(Ich vermute mal fuer $x [mm] \ge [/mm] 0$ wird das aehnlich definiert...)

> Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten
> gestellt:www.matheboard.de; www.onlinemathe.de

Direktere Links zu den Fragen dort waeren sehr hilfreich.

LG Felix


Bezug
        
Bezug
p-adische Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 So 08.11.2009
Autor: felixf

Hallo!

Schau auch mal hier.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]