pH- Wert berechnen < Chemie < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:41 So 11.11.2012 | Autor: | Roffel |
Aufgabe | Berechnen Sie den pH einer 0,1 molaren wässrigen Essigsäurelösung bei
Vernachlässigung der Ionenstärke bei einer Temperatur T = 25 °C.
[mm] CH_{3} COOH+H_{2}O [/mm] = [mm] CH_{3}COO^{-}+ H_{3}O^{+} [/mm] |
Servus,
ich hab mal eine Frage zu der Lösung dieser Aufgabe.
[Dateianhang nicht öffentlich] --> ist angehängt.
Erste Frage ist, ob man auswendig wissen muss das [mm] Ks(Essigsäure)=10^{-4.75} [/mm] ist oder wie wird das berechnet?
und zweitens habe ich ein mathematisches Problem beim auflösen des Ergebnisses.
Ks= [mm] \bruch{H_{3}O^{+} * H_{3}O^{+}}{0.1-H_{3}O^{+}} =10^{-4.75}
[/mm]
leider habe ich es bisher nicht geschafft diese Gleichung nach [mm] H_{3}O^{+} [/mm] aufzulösen.
Wäre super wenn mir jemand weiter helfen könnte.
Grüße
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
Hallo Roffel,
> Berechnen Sie den pH einer 0,1 molaren wässrigen
> Essigsäurelösung bei
> Vernachlässigung der Ionenstärke bei einer Temperatur T
> = 25 °C.
>
> [mm]CH_{3} COOH+H_{2}O[/mm] = [mm]CH_{3}COO^{-}+ H_{3}O^{+}[/mm]
> Servus,
>
> ich hab mal eine Frage zu der Lösung dieser Aufgabe.
> [Dateianhang nicht öffentlich] --> ist angehängt.
>
> Erste Frage ist, ob man auswendig wissen muss das
> [mm]Ks(Essigsäure)=10^{-4.75}[/mm] ist oder wie wird das
> berechnet?
Der Ks-Wert ist bei gegebener Temperatur eine Naturkonstante und wird aus einem Tafelwerk abgelesen.
> und zweitens habe ich ein mathematisches Problem beim
> auflösen des Ergebnisses.
> Ks= [mm]\bruch{H_{3}O^{+} * H_{3}O^{+}}{0.1-H_{3}O^{+}} =10^{-4.75}[/mm]
>
> leider habe ich es bisher nicht geschafft diese Gleichung
> nach [mm]H_{3}O^{+}[/mm] aufzulösen.
>
> Wäre super wenn mir jemand weiter helfen könnte.
>
> Grüße
>
Ks= [mm]\bruch{H_{3}O^{+} * H_{3}O^{+}}{0.1-H_{3}O^{+}} =10^{-4.75}[/mm]
Ich muss Deine Schreibweise rügen - bzgl. der Konzentrationen.
Entweder Du schreibst ein kleines c mit runden Klammern danach - oder Du nimmst eckige Klammern.
$Ks [mm] \; [/mm] = [mm] \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{Glgw.}}= \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{0}-[H_{3}O^{+}]} [/mm] $
[mm] $[H_{3}O^{+}]^{2} \; [/mm] = [mm] \; Ks*\left([HAc]_{0}-[H_{3}O^{+}]\right)$
[/mm]
[mm] $[H_{3}O^{+}]^{2} +Ks*[H_{3}O^{+}]- Ks*[HAc]_{0}=0$
[/mm]
[mm] $x^{2} [/mm] +Ks*x - [mm] Ks*[HAc]_{0}=0$
[/mm]
Kommt Dir diese Gleichung bekannt vor ?
Chemiker rechnen das aber anders: wegen [mm] $[HAc]_{Glgw.}\; \approx \; [HAc]_{0}$
[/mm]
$Ks [mm] \; [/mm] = [mm] \; \frac{[H_3O^{+}]^2}{[HAc]_{Glgw.}}\; \approx \; \; \frac{[H_3O^{+}]^2}{[HAc]_{0}}$
[/mm]
damit:
[mm] $[H_3O^{+}] \; \approx \; \wurzel{[HAc]_{0}*Ks}$
[/mm]
Berechne doch einmal nach beiden Methoden & vergleiche.
LG, Martinius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:18 Mo 12.11.2012 | Autor: | Roffel |
Hi,
erstmal vielen Dank für deine ausführliche Antwort=)
Bin neu in der Chemie.
Hab das Ergebnis mit der mathematischen Lösung (quadratische Gleichung) richtig raus bekommen. Allerdings ist das mit diesen langen Zahlenwerten nicht gerade geschickt gewesen zu rechnen.
> Ks= [mm]\bruch{H_{3}O^{+} * H_{3}O^{+}}{0.1-H_{3}O^{+}} =10^{-4.75}[/mm]
>
> [mm]Ks \; = \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{Glgw.}}= \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{0}-[H_{3}O^{+}]}[/mm]
>
> [mm][H_{3}O^{+}]^{2} \; = \; Ks*\left([HAc]_{0}-[H_{3}O^{+}]\right)[/mm]
was meinst du hier mit deinem A? den Hintergrund versteh ich hier noch nicht ganz.
> [mm][H_{3}O^{+}]^{2} +Ks*[H_{3}O^{+}]- Ks*[HAc]_{0}=0[/mm]
>
> [mm]x^{2} +Ks*x - Ks*[HAc]_{0}=0[/mm]
>
>
> Chemiker rechnen das aber anders: wegen [mm][HAc]_{Glgw.}\; \approx \; [HAc]_{0}[/mm]
>
> [mm]Ks \; = \; \frac{[H_3O^{+}]^2}{[HAc]_{Glgw.}}\; \approx \; \; \frac{[H_3O^{+}]^2}{[HAc]_{0}}[/mm]
diese Formel kann ich leider auch noch nicht nachvollziehen :(
> damit:
>
> [mm][H_3O^{+}] \; \approx \; \wurzel{[HAc]_{0}*Ks}[/mm]
lg Roffel
|
|
|
|
|
Hallo Roffel,
> Hi,
>
> erstmal vielen Dank für deine ausführliche Antwort=)
> Bin neu in der Chemie.
>
> Hab das Ergebnis mit der mathematischen Lösung
> (quadratische Gleichung) richtig raus bekommen. Allerdings
> ist das mit diesen langen Zahlenwerten nicht gerade
> geschickt gewesen zu rechnen.
Dein Ergebnis lautete:
[mm] $[H_3O^{+}] \; [/mm] = [mm] \; [/mm] 0,001324660 [mm] \; [/mm] mol/l$
Damit: $pH [mm] \; [/mm] = [mm] \; [/mm] -lg [mm] \left([H_3O^{+}] \right) \; \approx \; [/mm] 2,878 [mm] \; \approx \;2,9$
[/mm]
Kaufe Dir doch einen geeigneten Taschenrechner; mit vielen Variablenspeichern.
Ich habe da z.B. einen 25 Jahre alten HP 32S (programmierbar): mit 26 Buchstabentasten (Zweitfunktion) - auf jedem Buchstaben kann ich eine beliebige Zahl speichern.
>
>
> > Ks= [mm]\bruch{H_{3}O^{+} * H_{3}O^{+}}{0.1-H_{3}O^{+}} =10^{-4.75}[/mm]
>
> >
> > [mm]Ks \; = \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{Glgw.}}= \; \bruch{[H_{3}O^{+}] * [H_{3}O^{+}]}{[HAc]_{0}-[H_{3}O^{+}]}[/mm]
>
> >
> > [mm][H_{3}O^{+}]^{2} \; = \; Ks*\left([HAc]_{0}-[H_{3}O^{+}]\right)[/mm]
>
> was meinst du hier mit deinem A? den Hintergrund versteh
> ich hier noch nicht ganz.
Chemiker kürzen Essigsäure gern mit HAc ab - aus: lateinisch acidum aceticum.
Deprotonierte Essigsäure oder Acetat entsprechend: [mm] Ac^{-} [/mm] .
> > [mm][H_{3}O^{+}]^{2} +Ks*[H_{3}O^{+}]- Ks*[HAc]_{0}=0[/mm]
> >
> > [mm]x^{2} +Ks*x - Ks*[HAc]_{0}=0[/mm]
>
>
> >
> >
> > Chemiker rechnen das aber anders: wegen [mm][HAc]_{Glgw.}\; \approx \; [HAc]_{0}[/mm]
>
> >
> > [mm]Ks \; = \; \frac{[H_3O^{+}]^2}{[HAc]_{Glgw.}}\; \approx \; \; \frac{[H_3O^{+}]^2}{[HAc]_{0}}[/mm]
>
> diese Formel kann ich leider auch noch nicht nachvollziehen
Es gibt schwache, mittelstarke und starke Säuren (wirf doch einmal einen Blick in eine schulische Formelsammlung für Mathe/Informatik/Physik/Chemie/Biologie - gibt's in jeder Buchhandlung für um die 10,- Euro).
Essigsäure gehört zu den schwachen Säuren. Von 100 Molekülen dissoziiert in Wasser im Mittel nur ein einziges.
Daher resultiert die obige gute Näherung.
> :(
> > damit:
> >
> > [mm][H_3O^{+}] \; \approx \; \wurzel{[HAc]_{0}*Ks}[/mm]
[mm] $[H_3O^{+}] \; \approx \; \wurzel{[HAc]_{0}*Ks}\; \approx \; \wurzel{0,1*10^{-4,75}}\; \approx \; [/mm] 0,001333521$
Damit: $pH [mm] \; [/mm] = [mm] \; [/mm] -lg [mm] \left([H_3O^{+}] \right) \; \approx \; [/mm] 2,875 [mm] \; \approx \;2,9$
[/mm]
Vergleiche mit obigem Ergebnis.
>
>
> lg Roffel
LG, Martinius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:14 Do 15.11.2012 | Autor: | Roffel |
>
>
Servus,
vielen Dank für die Antwort.
> Kaufe Dir doch einen geeigneten Taschenrechner; mit vielen
> Variablenspeichern.
hab einen von Sharp ;)
>
> Chemiker kürzen Essigsäure gern mit HAc ab - aus:
> lateinisch acidum aceticum.
>
> Deprotonierte Essigsäure oder Acetat entsprechend: [mm]Ac^{-}[/mm]
okay, das merke ich mir mal so.
Grüße
Roffel
|
|
|
|