matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematikpar rate und forward rate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - par rate und forward rate
par rate und forward rate < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

par rate und forward rate: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 16:04 Sa 14.01.2012
Autor: MarquiseDeSade

Aufgabe
Es werden folgende Anleihen am Markt gehandelt:

Kurs 96,27 , Nullkuponanleihe, 1 Jahr Restlaufzeit
Kurs 101,54 , 5,5% Kupon, 2 Jahre Restlaufzeit
Kurs 100,09, 6,25% Kupon, 3 Jahre Restlaufzeit


b) [Ermittlung zero rate + zero Diskontfaktoren]
c) [Ermittlung forward rate f1,2  ; f2,3  ; f1,3]

d) Bitte weisen Sie unter Verwendung der in Aufgabenstellung b) und c) ermittelten Marktzinssätze nach, dass eine Investition in Höhe von 2 Mio Euro zum gleichen erwarteten Endwert kommt, wenn der Investor:

-die Anlage direkt über drei Jahre tätigt
-die Anlage zunächst zwei Jahre tätigt und dann ein Jahr verlängert
-die Anlage zunächst ein Jahr tätigt und dann zwei Jahre verlängert

Hallo ihr Lieben ;)

Ich komme bei diese Aufgabe (d) leider nicht weiter. Folgende zero rates (z), Diskontfaktoren(d) und forward rates(f) habe ich ermittelt:


[mm] d_1 [/mm] = 0,9627,  [mm] d_2 [/mm] = 0,9122 ,  [mm] d_3 [/mm] = 0,8317  ; [mm] z_1 [/mm] = 3,87 % , [mm] z_2 [/mm] = 4,70 % , [mm] z_3 [/mm] = 6,33 %

[mm] f_{1,2} [/mm] = 5,53 % , [mm] f_{2,3} [/mm] = 9,66 % , [mm] f_{1,3} [/mm] = 7,54 %

Jetzt zu meinem Verständnisproblem. Was genau sagt denn eine forward rate [mm] f_{1,2} [/mm] genau aus? Das zum Zeitpunkt [mm] t_0 [/mm] eine Anlage ab [mm] t_1 [/mm] bis [mm] t_2 [/mm] einen Endwert generiert, welcher bei gleicher Zinskurve derselbe währe, als wenn ich das Kapital direkt ab [mm] t_0 [/mm] bis [mm] t_2 [/mm] verzinsen würde?

Die forward rate unterstellt doch eine Zinsessinzannahme, oder? Demnach ist sie nicht das Aäuivalent zum Diskontfaktor, welcher eben keine Reinvestitionsannahme unterstellt?

Wenn dem so ist, dann kann ich ja so überhaupt nicht nachweisen, was unter d) gefordert ist. Ich dachte mir also, dass ich über die forward rates noch die par rate errechne:

[mm] p_1 [/mm] = 3,87 %
[mm] p_2 [/mm] = 4,68 %
[mm] p_3 [/mm] = 6,22 %

Tja und ab hier verließ es mich ;) . Über Anregung würde ich mich riesig freuen.

Gruß
Tobias





        
Bezug
par rate und forward rate: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Sa 14.01.2012
Autor: Staffan

Hallo,


das Verständnis der forward rates ist weitgehend korrekt. Verglichen wird eine Anlage 1 etwa von [mm] t_0 [/mm]  bis [mm] t_2 [/mm] mit einer Anlage 2a von [mm] t_0 [/mm]  bis [mm] t_1 [/mm]  und einer weiteren 2b in der Zukunft geplanten von [mm] t_1 [/mm]  bis [mm] t_2 [/mm] , wobei der Gesamtertrag dem entsprechen muß, was man heute für Anlage 1 erhalten würde. Ich würde  anstelle von gleicher lieber von zum Zeitpunkt der Investitionsentscheidung aktueller Zinsstrukturkurve sprechen.
Die Zerobond(abzinsungs)faktoren verwendet man, um die Wirkungen von Kouponzahlungen und damit etwaiger Arbitragemöglichkeiten zu eliminieren. Der Zinseszinseffekt wird dabei wie bei Zerobonds auch berücksichtigt, wie man bei der Berechnungsweise der Zinssätze [mm] z_1, z_2, z_3 [/mm] (=spot oder zero rates) aus den Zerobond(abzinsungs)faktoren sehen kann. Das "Stehenlassen" der Zinsen ist die Reinvestitionsannahme.
Die forward rates werden ja auch aus den zero rates ermittelt. Ich erhalte im übrigen für alle rates die gleichen Werte.
Bei der Aufgabe d) kann der Nachweis für die Anlage mit den zero und forward rates so geführt werden:
Ausgangspunkt ist die dreijährige Anlage mit B=2.000.000

$ K = B [mm] \cdot \left( 1 + \bruch{z_3}{100} \right)^3 [/mm] $,

für die erste Alternative gilt:

$ K = B [mm] \cdot \left( 1 + \bruch{z_2}{100} \right)^2 \cdot \left( 1 + \bruch{f_{2,3}}{100} \right) [/mm] $,

dabei wird der forward berechnet nach:

$ [mm] \left( 1 + \bruch{z_3}{100} \right)^3 [/mm] = [mm] \left( 1 + \bruch{z_2}{100} \right)^2 \cdot \left( 1 + \bruch{f_{2,3}}{100} \right) [/mm] $.

Man sieht: die rechte Seite in beiden Fällen ist gleich.

Gruß
Staffan

Bezug
        
Bezug
par rate und forward rate: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:34 So 15.01.2012
Autor: MarquiseDeSade

Hallo Staffan ;)

Zuerst einmal herzlichen Dank für deine sehr ausführliche Erklärung. Soweit dürfte jetzt auch alles klar sein. Ich habe das ganze mal auf den Endwert berechnet und komme allerdings zu unterschiedlichen Ergebnissen. Liegt dies schlicht an Rundungsfehlern, welche aus den zero rates und forward rates entstehen?


Zudem habe ich ja auch die par rate berechnet - auch, bzw. eher zu Übungszwecken. Was sagt eine  3 Jahres par rate im konkreten Beispiel aus?
[mm] $ p_1 $ = 3,87 % $ p_2 $ = 4,68 % $ p_3 $ = 6,22 % [/mm]


Gruß
Tobias


Bezug
                
Bezug
par rate und forward rate: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 So 15.01.2012
Autor: Staffan

Hallo,

gerne geschehen. Die unterschiedlichen Ergebnisse beruhen letztlich darauf, daß bei der Berechnung der zero und forward rates abhängig von dem verwendeten Rechner eine Vielzahl von Stellen nach dem Komma ermittelt wird, man dann aber nur mit wenigen, hier 2 Stellen, weiter rechnet. Das führt zu Ungenauigkeiten, d.h. Rundungsfehlern.

Die par rates sind die aktuellen Renditen. Für die dreijährige Anleihe beträgt sie 6,22% p.a.. Wenn deren Zahlungsstrom damit abgezinst wird, ergibt sich der genannte Kurs von 100,09.

Gruß
Staffan  


Bezug
                        
Bezug
par rate und forward rate: Kapiert ;)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 So 15.01.2012
Autor: MarquiseDeSade

Habe jetzt alles verstanden - vielen Dank ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]