matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenparallele und orthogonale Vek.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - parallele und orthogonale Vek.
parallele und orthogonale Vek. < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele und orthogonale Vek.: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 10.02.2015
Autor: Lucas95

Aufgabe
Gegeben sind die Vektoren [mm] \vec{u}=[-1,-2,a] [/mm] und [mm] \vec{v}=[-1,a,a] [/mm] in Abhängigkeit von der reellen Zahl a!
Bestimmen Sie jeweils die konkreten Zahlenwerte für a1 und a2 mit a1 Element von R so, dass die Vektoren parallel sind und mit a2 Element R so, dass die Vektoren orthogonal zueinander sind.

Liebe community,
a1 müsste -2 sein, da [-1,-2,a]=k*[-1,a,a] der Ansatz ist.
So rechnet man dann
(1) -1=k*-1 --> k=1
(2) -2=1*a --> a=-2
(3) -2=1*-2 w.A.
--> a1=-2, für k kommt jeweils derselbe Wert heraus --> die Vektoren sind parallel.

a2 müsste eins sein, denn hier muss das Skalarprodukt der beiden Vektoren sein --> (-1*-1)+(-2*1)+1*1 = 1-2+1 = 0
--> Skalarprodukt = 0 --> Vektoren orthogonal.

        
Bezug
parallele und orthogonale Vek.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 10.02.2015
Autor: fred97


> Gegeben sind die Vektoren [mm]\vec{u}=[-1,-2,a][/mm] und
> [mm]\vec{v}=[-1,a,a][/mm] in Abhängigkeit von der reellen Zahl a!
>  Bestimmen Sie jeweils die konkreten Zahlenwerte für a1
> und a2 mit a1 Element von R so, dass die Vektoren parallel
> sind und mit a2 Element R so, dass die Vektoren orthogonal
> zueinander sind.
>  Liebe community,
> a1 müsste -2 sein, da [-1,-2,a]=k*[-1,a,a] der Ansatz ist.
> So rechnet man dann
> (1) -1=k*-1 --> k=1
>  (2) -2=1*a --> a=-2

>  (3) -2=1*-2 w.A.
>  --> a1=-2, für k kommt jeweils derselbe Wert heraus -->

> die Vektoren sind parallel.

Das ist O.K.


>  
> a2 müsste eins sein, denn hier muss das Skalarprodukt der
> beiden Vektoren sein --> (-1*-1)+(-2*1)+1*1 = 1-2+1 = 0
> --> Skalarprodukt = 0 --> Vektoren orthogonal.  

Du hast gezeigt: wenn  a=1 ist, so sind die die Vektoren [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] zueinander orthogonal .

Dieser Aufgabenteil verlangt aber etwas mehr:

zeige auch noch:  wenn  [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] zueinander orthogonal  sind, so muss a=1 sein.

FRED


Bezug
                
Bezug
parallele und orthogonale Vek.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 10.02.2015
Autor: Lucas95

Es steht da
(-1*-1)+(-2*a)+(a*a)=0
also
-1-2*a+a² = 0
man kann deutlich erkennen, dass a nur 1 sein kann. ?

Bezug
                        
Bezug
parallele und orthogonale Vek.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 10.02.2015
Autor: fred97


> Es steht da
> (-1*-1)+(-2*a)+(a*a)=0
>  also
> -1-2*a+a² = 0
>  man kann deutlich erkennen, dass a nur 1 sein kann. ?

Ummmpff ! ?  Ich erkenne das nicht, und schon gar nicht deutlich, denn:

   a=1 ist aber keine Lösung der Gleichung [mm] $-1-2a+a^2=0$ [/mm]   ( es ist [mm] -1-2+1^2=-2). [/mm]

Was nun ?  Ganz einfach: Du hast das Skalaprodukt falsch berechnet. Richtig ist:


    [mm] $1-2a+a^2$. [/mm]

Wegen  [mm] $1-2a+a^2=(1-a)^2$ [/mm] kann man nun deutlicher (und deutlicher gehts nicht mehr) erkennen:


   [mm] $1-2a+a^2=(1-a)^2=0 \gdw [/mm] a=1$

Gruß von

  Fred Deutlich




Bezug
                                
Bezug
parallele und orthogonale Vek.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Di 10.02.2015
Autor: abakus


> > Es steht da
> > (-1*-1)+(-2*a)+(a*a)=0
> > also
> > -1-2*a+a² = 0
> > man kann deutlich erkennen, dass a nur 1 sein kann. ?

>

> Ummmpff ! ? Ich erkenne das nicht, und schon gar nicht
> deutlich, denn:

>

> a=1 ist aber keine Lösung der Gleichung [mm]-1-2a+a^2=0[/mm] ( es
> ist [mm]-1-2+1^2=-2).[/mm]

>

> Was nun ? Ganz einfach: Du hast das Skalaprodukt falsch
> berechnet. Richtig ist:

>
>

> [mm]1-2a+a^2[/mm].

>

> Wegen [mm]1-2a+a^2=(1-a)^2[/mm] kann man nun deutlicher (und
> deutlicher gehts nicht mehr) erkennen:

>
>

> [mm]1-2a+a^2=(1-a)^2=0 \gdw a=1[/mm]

>

> Gruß von

>

> Fred Deutlich

>
>
>
Womit wieder einmal gezeigt wäre, dass " Deutlich" den Wert 97 annimmt (und ich dachte bisher, die Antwort auf alles sei 42.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]