matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisparameter t
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - parameter t
parameter t < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parameter t: nullstellen
Status: (Frage) beantwortet Status 
Datum: 23:53 Di 17.05.2005
Autor: alohol

hi...

ich hab hier eine funktion:
$ [mm] f(x)=-ln(t)\cdot{}t^x-x^{-2} [/mm] $

wie kann ich die Nullstellen in abhängigkeit von t berechnen?
Also bsp. für t>0.1 => 3 Nullstellen oder so ähnlich ...

wie geht das hier ?

        
Bezug
parameter t: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Mi 18.05.2005
Autor: Karl_Pech

Hallo alohol,

> ich hab hier eine funktion:
>  [mm]f(x)=-ln(t)\cdot{}t^x-x^{-2}[/mm]
>  
> wie kann ich die Nullstellen in abhängigkeit von t
> berechnen?

Indem Du ein Näherungsverfahren dazu herleitest:

[m]f\left( x \right): = - \ln \left( t \right)t^x - x^{ - 2} = 0 \Leftrightarrow \underbrace {x^2 t^x \ln \left( t \right) + 1}_{ = :z\left( x \right)} = 0[/m]

Kennst Du das Newton-Verfahren? Das geht so:

[m]x_{i + 1} : = x_i - \frac{{z\left( {x_i } \right)}} {{z'\left( {x_i } \right)}}[/m]

In unserem Fall wäre das dann:

[m]x_{i + 1} : = x_i - \frac{{z\left( {x_i } \right)}} {{z'\left( {x_i } \right)}} = x_i - \frac{{x_i^2 t^{x_i } \ln \left( t \right) + 1}} {{t^{x_i } \left( {x_i^2 \ln \left( t \right)^2 + 2x_i \ln t} \right)}}[/m]

Wobei der Nenner nicht 0 werden darf (also [m]t \ne 1 \wedge x_i \ne 0 \wedge x_i \ln t \ne - 2[/m]). Jetzt hast Du ein Verfahren mit dem Du alle Nullstellen von f lokalisieren kannst, vorrausgesetzt Du kannst den Anfangswert gut raten (schau dir dazu z.B. einige Graphen von f für verschiedene t an). "Gut Raten" bedeutet, daß der Anfangswert nicht "in der Nähe" eines Extremums oder einer Wendestelle (?) liegen sollte.


Viele Grüße
Karl



Bezug
                
Bezug
parameter t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Mi 18.05.2005
Autor: alohol

cool Karl Pech.
Ja ich kenne das Newton Verfahren hatte auch schon irgendwie daran gedacht. ABer das Problem ist wie soll das Newton Verfahren mit einer Funktio n mit Parameter durchführen???

Bezug
                        
Bezug
parameter t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mi 18.05.2005
Autor: Karl_Pech

Hallo alohol,


>  Ja ich kenne das Newton Verfahren hatte auch schon
> irgendwie daran gedacht. ABer das Problem ist wie soll das
> Newton Verfahren mit einer Funktion mit Parameter
> durchführen???


Das ist das Problem. Durch das Newton-Verfahren hast Du das [mm] $x\!$ [/mm] "eliminieren" können, so daß Du jetzt so etwas wie eine Funktion erhalten hast, die nur von [mm] $t\!$ [/mm] abhängt. Du gibt der Funktion das [mm] $t\!$, [/mm] einen Startwert [mm] $x_0$, [/mm] die Anzahl der Iterationsschritte [m]N \in \IN[/m] und sie liefert dir dann die Nullstelle, wenn der Startwert passend war und das [mm] $t\!$ [/mm] eine Funktion mit Nullstellen angibt. (Das muß vorher überprüft werden.) Aber ohne das konkrete [mm] $t\!$ [/mm] kannst Du hier auch mit Newton nichts ausrichten. Denn für manche [mm] $t\!$ [/mm] hat deine Funktion gar keine Nullstellen.



Viele Grüße
Karl



Bezug
                                
Bezug
parameter t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mi 18.05.2005
Autor: Karl_Pech

Ich habe jetzt im Internet folgende Konvergenzbedingung für das Newton-Verfahren gefunden:


[m]\left|z\left(x\right)z''\left(x\right)\right| < \left(z'\left(x\right)\right)^2[/m]


Wenn das stimmt, kannst Du anhand dieser Bedingung und anhand der Angaben, die ich vorher gemacht habe, ein Programm schreiben, das dir [mm] $\forall [/mm] t$ eine Nullstelle (oder Fehlermeldung) für die entstehende Funktion liefern sollte.



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]