matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationpart. Ableitung & stat. Punkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - part. Ableitung & stat. Punkte
part. Ableitung & stat. Punkte < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

part. Ableitung & stat. Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 26.07.2008
Autor: F22

Aufgabe
Berechnen Sie die partiellen Ableitungen erster Ordnung der Funktion [mm] f: \IR^3 \to \IR[/mm], die gegeben ist durch
[mm] f(x,y,z) = -2x^3 + 15x^2 - 36x +2y-3z + \integral_{y}^{z} e^{t^2}dt [/mm]

Bestimmen Sie dann alle acht stationären Punkte


Hallo,

erstmal bedanke ich mich, dass du dir die Mühe machst, und dies liest.

Mir fehlt der Ansatz, wie ich hier die Stationären Punkte bestimmen soll.
Erstmal habe ich die 3 Partiellen Ableitungen gebildet:

[mm] \bruch{\partial f}{\partial x} = -6x^2 + 30x -36 [/mm]
[mm] \bruch{\partial f}{\partial } = 2-e^{2y} [/mm]
[mm] \bruch{\partial f}{\partial } = -3+e^{2z} [/mm]

Und nun verlier ich den Überblick. Mein nächster Schritt war es, die drei Partiellen Ableitung jeweils 0 zu setzen und x,y,z zu bestimmen.
Hier komme ich jedoch nur auf 4 Punkt:
[mm] x_1 = 3, x_2 = 2, y = \bruch{ln(2)}{2}, z = \bruch{ln(3)}{2} [/mm]

Mag mir jemand erklären, wie ich nun weiter komme.

Vielen Dank
F22

        
Bezug
part. Ableitung & stat. Punkte: Korrektur
Status: (Antwort) fertig Status 
Datum: 19:45 Sa 26.07.2008
Autor: Loddar

Hallo F22!



> [mm]\bruch{\partial f}{\partial x} = -6x^2 + 30x -36[/mm]

[ok]

  

> [mm]\bruch{\partial f}{\partial } = 2-e^{2y}[/mm]

[notok] Das muss [mm] $2-e^{y^2}$ [/mm] lauten!
Damit erhältst Du hieraus auch zwei unterschiedliche Lösungen.


> [mm]\bruch{\partial f}{\partial } = -3+e^{2z}[/mm]

[notok] wie oben!


Gruß
Loddar


Bezug
                
Bezug
part. Ableitung & stat. Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Sa 26.07.2008
Autor: F22

Danke!

Aber ist nicht

[mm] e^y^2 = e^2y [/mm]?

oder muss hier ein spezieller Fall beachtet werden?



Bezug
                        
Bezug
part. Ableitung & stat. Punkte: Potenzgesetze
Status: (Antwort) fertig Status 
Datum: 20:03 Sa 26.07.2008
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo F22!


Beachte die MBPotenzgesetze ...

Es gilt:  $\left(a^m\right)^2 \ = \ a^{2*m}$

Aber: $a^{m^2} \ = \ a^{m*m} \ = \ \left(a^m}\right)^m$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]