matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - partialbruchzerlegung
partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partialbruchzerlegung: aufgabe-regel anwenden
Status: (Frage) beantwortet Status 
Datum: 10:23 Fr 28.04.2006
Autor: asraii

Aufgabe
  [mm] \integral_{a}^{b}3x+4 [/mm] / [mm] x^2-2x [/mm] dx

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich weiß, kurz vorm abi sollte ich das können, aber bin so nervös, dass ich noch nicht mal von dieser funktion die stammfunktion machen kann! wäre echt nett wenn mir da jemand helfen könnte! danke

        
Bezug
partialbruchzerlegung: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 10:45 Fr 28.04.2006
Autor: Roadrunner

Hallo asraii,

[willkommenmr] !!


Zunächst einmal müssen wir hier die Nullstellen des Nenners bestimmen und den Nenner weitestgehnd faktorisieren. In diesem Falle reicht es aus, wenn wir ausklammern:

[mm] $\bruch{3x+4}{x^2-2x} [/mm] \ = \ [mm] \bruch{3x+4}{x*(x-2)} [/mm] \ = \ [mm] \bruch{A}{x}+\bruch{B}{x-2}$ [/mm]


Mit den Nullstellen-Faktoren haben wir auch gleich die einzelnen Nenner der neuen Partialbrüche.

Hierfür müssen wir nun die beiden Koeffizienten $A_$ und $B_$ bestimmen, indem wir die beiden Teilbrüche zusammenfassen:

[mm] $\bruch{A}{x}+\bruch{B}{x-2} [/mm] \ = \ [mm] \bruch{A*(x-2)}{x*(x-2)}+\bruch{B*x}{(x-2)*x} [/mm] \ = \ [mm] \bruch{A*x-2A+B*x}{x*(x-2)} [/mm] \ = \ [mm] \bruch{x*\blue{(A+B)} \ \red{-2A}}{x*(x-2)} [/mm] \ = \ [mm] \bruch{\blue{3}*x \ \red{+4}}{x*(x-2)}$ [/mm]


Nun machen wir den Koeffizientenvergleich:

[mm] $\blue{A+B} [/mm] \ = \ [mm] \blue{3}$ [/mm]

[mm] $\red{-2*A} [/mm] \ = \ [mm] \red{+4}$ [/mm]


Daraus nun $A_$ und $B_$ ermitteln und anschließend nach der Regel [mm] $\integral{\bruch{1}{z} \ dz} [/mm] \ = \ [mm] \ln|z|+C$ [/mm] integrieren.


Gruß vom
Roadrunner


Bezug
                
Bezug
partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Fr 28.04.2006
Autor: asraii

danke!!!! jetzt weiß ich wieder bescheid... ist ja im prinzip einfach, wenn man nicht zu hektisch dran geht :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]