matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Ableitung
partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 So 29.05.2011
Autor: jacob17

Hallo zusammen,
Hier eine kleine Aufgabe zur partiellen Ableitung, bei der ich mir nicht so sicher bin ob das was ich geschrieben hab ausreicht.
Sei f: [mm] IR^n \{0} \to [/mm] IR mit x [mm] \mapsto \bruch{x_i}{|x|} [/mm] für ein festes  [mm] 1\le [/mm] i [mm] \le [/mm] n Zu Bestimmen sind die partiellen Ableitungen [mm] \bruch{\partial f}{\partial x_j} [/mm] für [mm] 1\le [/mm] j [mm] \le [/mm] n Eigentlich müsste das doch so gehen. Zuerst bildet man die Ableitung für j=1 d.h man leitet f(x) = [mm] \bruch{x_1}{|x|} [/mm] ab dann für j=2. Man sieht dann recht schnell dass alle partiellen Ableitungen der Form
[mm] \bruch{\partial f}{\partial x_j} [/mm] = [mm] \bruch{2-x_j^2}{2|x|} [/mm] für j=1,...n
Sieht jemand von euch einen Denkfehler oder kann man das so stehenlassen?
Viele Grüße
jacob

        
Bezug
partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 So 29.05.2011
Autor: fred97


> Hallo zusammen,
>  Hier eine kleine Aufgabe zur partiellen Ableitung, bei der
> ich mir nicht so sicher bin ob das was ich geschrieben hab
> ausreicht.
> Sei f: [mm]IR^n \{0} \to[/mm] IR mit x [mm]\mapsto \bruch{x_i}{|x|}[/mm] für
> ein festes  [mm]1\le[/mm] i [mm]\le[/mm] n Zu Bestimmen sind die partiellen
> Ableitungen [mm]\bruch{\partial f}{\partial x_j}[/mm] für [mm]1\le[/mm] j
> [mm]\le[/mm] n Eigentlich müsste das doch so gehen. Zuerst bildet
> man die Ableitung für j=1 d.h man leitet f(x) =
> [mm]\bruch{x_1}{|x|}[/mm] ab dann für j=2. Man sieht dann recht
> schnell dass alle partiellen Ableitungen der Form
> [mm]\bruch{\partial f}{\partial x_j}[/mm] = [mm]\bruch{2-x_j^2}{2|x|}[/mm]
> für j=1,...n
>  Sieht jemand von euch einen Denkfehler oder kann man das
> so stehenlassen?

Nein. i ist fest !!!

Bei festem i sollst Du  $f(x)= [mm] \bruch{x_i}{|x|} [/mm] $ nach [mm] x_1, x_2 [/mm] , ..., [mm] x_n [/mm] ableiten

FRED

>  Viele Grüße
>  jacob


Bezug
                
Bezug
partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 So 29.05.2011
Autor: jacob17

Genau und wenn ich f(x) = [mm] \bruch{x_i}{|x|} [/mm] nach festem i ableite. Dann heißt das doch mit dem fängt man an [mm] \bruch{\partial f}{\partial x_1} [/mm] und mit [mm] \bruch{\partial f}{\partial x_n} [/mm]  hört man auf. oder?

Bezug
                        
Bezug
partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 So 29.05.2011
Autor: Al-Chwarizmi


> Genau und wenn ich f(x) = [mm]\bruch{x_i}{|x|}[/mm] nach festem i
> ableite.   [haee]

was soll das heißen ?
es wird doch nicht nach i abgeleitet !

> Dann heißt das doch mit dem fängt man an
> [mm]\bruch{\partial f}{\partial x_1}[/mm] und mit [mm]\bruch{\partial f}{\partial x_n}[/mm]
>  hört man auf. oder?

Du musst keineswegs n partielle Ableitungen wirklich
durchführen. Es kommt nur darauf an, ob man nach
[mm] x_i [/mm] ableitet oder nach einer der anderen Variablen [mm] x_j [/mm]
mit [mm] j\not={i} [/mm] .
So muss man also nur zwei Rechnungen durchführen.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]