matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationpartielle Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - partielle Integration
partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Beweis
Status: (Frage) beantwortet Status 
Datum: 18:10 Do 23.11.2006
Autor: Langer

Aufgabe
Beweisen sie durch partielle Integration

[mm] \integral_{0}^{\pi}{f(x)=cos^6(x) dx}=\bruch{5}{16}*\pi [/mm]

Komme nicht auf den Ansatz, würde es schaffen durch Substitution oder Partialbruchzerlegung, aber weiß nicht wie ich es über die partielle Integration machen soll!
Habe mir gedacht, das ich das Integral in 3 kleine Integrale mit jeweils [mm] \integral_{0}^{\pi}{f(x)=cos^2(x) dx} [/mm] zerlegen kann, und es so mit der paritellen Integration berechnen kann. Nur wie füge ich die "kleinen" Integrale zusammen?
Ich hoffe ihr könnt mir weiterhelfen.
Vielen Dank im Vorraus!

        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Fr 24.11.2006
Autor: angela.h.b.


> Beweisen sie durch partielle Integration
>  
> [mm]\integral_{0}^{\pi}{f(x)=cos^6(x) dx}=\bruch{5}{16}*\pi[/mm]
>  

Hallo,

Du meinst sicher [mm] \integral_{0}^{\pi}{cos^6(x) dx}. [/mm]

mit nur einer partiellen Integration wirst Du nicht auskommen, Du mußt das mehrmals machen.

Ich würde es so machen:

[mm] \integral_{0}^{\pi}{cos^6(x) dx}=\integral_{0}^{\pi}{cos(x)cos^5(x) dx} [/mm]

     p.I.:   u =sin(x)     v [mm] =cos^5(x) [/mm]
              u'=cos(x)    [mm] v'=-5sin(x)cos^4(x) [/mm]


Die nächste "Hürde"  ist dann die Integration von  [mm] cos^4(x), [/mm] welche Du entweder auf die gleiche Art mit p.I. angehen kannst, oder Du nutzt cos^4x [mm] =\bruch{1}{8}(cos4x+4cos2x+3) [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]