matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartielle Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - partielle Integration
partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Frage/Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:51 Di 28.06.2005
Autor: Langer

Hallo!

Also habe folgende Frage aufgrund einer Mathe-Hausarbeit:

"Die Funktion [mm] f_t(x)= \bruch{t+ ln(x)}{x} [/mm]  die x-Achse und die zur y-Achse parallele gerade durch den Hochpunkt von [mm] f_t(x)umschließen [/mm] eine endliche Fläche.
Bestimmen Sie deren Inhalt und interpretieren sie Ihr Ergebnis."

Folgendes habe ich errechnet:

Wir müssen die Stammfunktion der Gleichung errechnen:
die grenzen liegen -->
untere Grenze: Nullstelle des Graphen bei x = [mm] e^t [/mm] (aus vorhergehender Aufgabe errechnet)
obere Grenze: Parallele Gerade zur y-Achse durch den Hochpunkt, also x=e^(1-t)

also bilden wir das Integral:

[mm] A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]

um davon die Stammfunktion zu bilden wenden wir die partielle Integration an, dann steht da:

[mm] A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]

= [(t+ln(x)) [mm] \* [/mm] ln(x) ] - [mm] \integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]


----> hier geht es nicht weiter da sich das hintere Integral nicht auiflösen lässt!
Ich denke hier muss eine Substitution angewendet werden,
habe jedoch keine Ahnung wie das hier geht!
Ich hoffe Ihr könnt mir helfen!

Ich habe diese Frage auch in keinem anderem Forum gestellt!

Vielen Dank schon im Vorraus!
Grüße Langer

        
Bezug
partielle Integration: Hilfe
Status: (Antwort) fertig Status 
Datum: 23:17 Di 28.06.2005
Autor: Zwerglein

Hi, Langer,

> "Die Funktion [mm]f_t(x)= \bruch{t+ ln(x)}{x}[/mm]  die x-Achse und
> die zur y-Achse parallele gerade durch den Hochpunkt von
> [mm]f_t(x)umschließen[/mm] eine endliche Fläche.
>  Bestimmen Sie deren Inhalt und interpretieren sie Ihr
> Ergebnis."
>  
> Folgendes habe ich errechnet:
>  
> Wir müssen die Stammfunktion der Gleichung errechnen:
>  die grenzen liegen -->
>  untere Grenze: Nullstelle des Graphen bei x = [mm]e^t[/mm] (aus
> vorhergehender Aufgabe errechnet)

Nanu? Da käme ich aber auf [mm] x=e^{-t}! [/mm]
Oder liegt irgendwo ein Tippfehler vor?

>  obere Grenze: Parallele Gerade zur y-Achse durch den
> Hochpunkt, also x=e^(1-t)

Das hab' ich jetzt nicht nachgerechnet!

>  
> also bilden wir das Integral:
>  
> [mm]A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx}[/mm]
>  

Also: Ich würde den Integranden zunächst mal in 2 Summanden zerlegen:
(Ich schreib's mal als unbestimmtes Integral: Die Grenzen kannst Du ja am Schluss selbst einsetzen)

[mm] \integral{(\bruch{t}{x}+ \bruch{ln(x))}{x} dx} [/mm]

= t*ln(x) + [mm] \integral{\bruch{ln(x)}{x} dx} [/mm] = (***)

Das übrigbleibende Integral löst Du durch Substitution:

z = ln(x) => [mm] \bruch{dz}{dx} [/mm] = [mm] \bruch{1}{x} [/mm]  => dz = [mm] \bruch{1}{x}*dx [/mm]

und daher:

(***) = t*ln(x) + [mm] \integral{z*dz} [/mm]

= t*ln(x) + [mm] \bruch{1}{2}z^{2} [/mm] +c  (das c brauchst Du später natürlich nicht mehr!)

= t*ln(x) + [mm] \bruch{1}{2}(ln(x)^{2} [/mm] +c.

So: Und nun die Grenzen einsetzen!
(Aber: Kontrollier' die Grenzen lieber noch mal!
Die Nullstelle war ja schon mal falsch!)


Bezug
                
Bezug
partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Di 28.06.2005
Autor: Langer

Jap!
Sorry war ein Tipfehler:

Die Nullstelle liegt bei x= e^(-t)

Gruß und vielen Dank Langer

Bezug
        
Bezug
partielle Integration: Maximum stimmt ...
Status: (Antwort) fertig Status 
Datum: 23:30 Di 28.06.2005
Autor: Loddar

Hallo Langer!


Dein Extremwert bei [mm] $x_E [/mm] \ = \ [mm] e^{1-t}$ [/mm] kann ich bestätigen [ok] !!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]