matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysispartielle integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - partielle integration
partielle integration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle integration: Frage
Status: (Frage) beantwortet Status 
Datum: 12:03 Mi 30.03.2005
Autor: Gopal

Hallo,

ich soll eine Stammfunktion für f(x)=x*arctan x bestimmen.

mittels partieller integration bin ich auf folgendes gekommen:

[mm] \integral_{}^{} [/mm] {f(x) dx} = arctan x *  [mm] \bruch{1}{2} X^{2} [/mm] -  [mm] \integral_{}^{} [/mm] { [mm] \bruch{1}{1+x^2}* \bruch{1}{2} X^{2} [/mm] dx}

aber was mache ich jetzt? ich komme da nicht weiter.

gruß
gopal

        
Bezug
partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mi 30.03.2005
Autor: Max

Hi gopal,

na ganz einfach, du kannst jetzt den Integranden weiter zerlegen zu

[mm] $\frac{1}{1+x^2}\cdot \frac{1}{2}x^2 [/mm] = - [mm] \frac{1}{2} \cdot \frac{x^2}{1+x^2} [/mm] = [mm] -\frac{1}{2} \cdot \frac{1+x^2-1}{1+x^2}=-\frac{1}{2}\cdot \left( 1- \frac{1}{1+x^2}\right)$ [/mm]

Dieser Integrand besteht aus zwei elementar integrierbaren Funktion und sollte kein Problem mehr sein.

Poste noch das Ergebnis, damit wir kontrollieren können.

Gruß Brackhaus

Bezug
                
Bezug
partielle integration: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 30.03.2005
Autor: Gopal


> Hi gopal,
>  
> na ganz einfach, du kannst jetzt den Integranden weiter
> zerlegen zu
>  
> [mm]\frac{1}{1+x^2}\cdot \frac{1}{2}x^2 = - \frac{1}{2} \cdot \frac{x^2}{1+x^2} = -\frac{1}{2} \cdot \frac{1+x^2-1}{1+x^2}=-\frac{1}{2}\cdot \left( 1- \frac{1}{1+x^2}\right)[/mm]
>  
> Dieser Integrand besteht aus zwei elementar integrierbaren
> Funktion und sollte kein Problem mehr sein.
>  
> Poste noch das Ergebnis, damit wir kontrollieren können.

vielen dank für deine hilfe.

jetzt ist es ja einfach, da ja (arctan x)'= [mm] \bruch{1}{1+x^2} [/mm]
also:
[mm] \integral_{}^{} {f(x) dx}= \bruch{1}{2} (x^2*arctan x + arctan x - x)[/mm]

stimmt das so?

aber wie kommt man auf [mm] \frac{1+x^2-1}{1+x^2}= \frac{1}{2}\cdot \left( 1- \frac{1}{1+x^2}\right) [/mm]

das kann ich nicht sehen, würde ich aber gerne, weil ich da ja hängen geblieben bin.

grüße
gopal

Bezug
                        
Bezug
partielle integration: Anwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 30.03.2005
Autor: Zwerglein

Hi, gopal,

Du kannst den Term [mm] x^{2}*\bruch{1}{x^{2}+1} [/mm]  = [mm] \bruch{x^{2}}{x^{2}+1} [/mm]
so umformen wie Brackhaus das vorgeschlagen hat, also:
[mm] \bruch{x^{2} + 1 - 1}{x^{2}+1} [/mm]
= [mm] \bruch{(x^{2} + 1) - 1}{x^{2}+1} [/mm]
=  [mm] \bruch{x^{2} + 1}{x^{2}+1} [/mm] - [mm] \bruch{ 1}{x^{2}+1} [/mm]
= 1 - [mm] \bruch{ 1}{x^{2}+1} [/mm]

oder Du machst einfach Polynomdivision:
[mm] x^{2} [/mm] : [mm] (x^{2} [/mm] + 1) = 1 - [mm] \bruch{ 1}{x^{2}+1} [/mm]



Bezug
                                
Bezug
partielle integration: dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Mi 30.03.2005
Autor: Gopal

vielen dank!
so einfach ist dfas also :)

gopal


> Hi, gopal,
>  
> Du kannst den Term [mm]x^{2}*\bruch{1}{x^{2}+1}[/mm]  =
> [mm]\bruch{x^{2}}{x^{2}+1}[/mm]
> so umformen wie Brackhaus das vorgeschlagen hat, also:
>  [mm]\bruch{x^{2} + 1 - 1}{x^{2}+1}[/mm]
> = [mm]\bruch{(x^{2} + 1) - 1}{x^{2}+1}[/mm]
> =  [mm]\bruch{x^{2} + 1}{x^{2}+1}[/mm] - [mm]\bruch{ 1}{x^{2}+1}[/mm]
>  = 1 -
> [mm]\bruch{ 1}{x^{2}+1}[/mm]
>  
> oder Du machst einfach Polynomdivision:
>  [mm]x^{2}[/mm] : [mm](x^{2}[/mm] + 1) = 1 - [mm]\bruch{ 1}{x^{2}+1}[/mm]
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]