matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenpermutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - permutation
permutation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Sa 16.01.2010
Autor: simplify

Aufgabe
a) Gegeben seien die Permutationen
            [mm] \pi_{1} [/mm] = (1 2 3 4 5 )
                 (3 2 5 4 1 )
und [mm] \pi_{2} [/mm] = (1,4) [mm] \circ [/mm] (4,3) [mm] \circ [/mm] (2,5,4,3). Bestimmen sie [mm] \pi_{1} \circ \pi_{2}, \pi_{2}^{-1}, sgn\pi_{2}. [/mm] Schreiben sie [mm] \pi_{2} [/mm] als Produkt elementefremder Zyklen und als Produkt von Transpositionen. Bestimmen sie [mm] \pi_{2}^{100}. [/mm]

b) Zeigen sie,dass jedes Produkt zweier Transpositionen aus [mm] S_{n} [/mm] mit n>= 3 Produkt von Zyklen der Länge 3 ist.

hallo,
die verknüpfungen zweier permutationen mit zwei zwilen verstehe ich, aber ich weiß nicht was ich z.b. bei (1,4) [mm] \circ [/mm] (4,3) machen muss.
und jetzt habe ich auch das gefühl,das ich das "prinzip" doch noch nicht wirklich verstanden habe.
kann mir jemand helfen?

        
Bezug
permutation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:07 So 17.01.2010
Autor: simplify

hallo nochmal,
in der hoffnung,dass mir jemand helfen kann.
ich habe nun einige erbenisse selbst gefunden und wollte nach der richtigkeit fragen.
[mm] \pi_{1} \circ \pi_{2}= \pmat{ 1& 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 } [/mm]
[mm] \pi_{2}^{-1}= \pmat{ 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 } [/mm]
[mm] \pi_{2}^{100}=\pi_{2}^{4} [/mm]
[mm] \pi_{2} [/mm] als produkt elementefremder zyklen ist (1,4,3)(2,5)
[mm] \pi_{2} [/mm] als produkt von transpositionen (1,4,3) [mm] \circ [/mm] (2,5)

stimmt das soweit? und was ist [mm] sgn\pi_{2}? [/mm]
zu teil b) hab ich noch nicht wirklich eine idee...


Bezug
                
Bezug
permutation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 19.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 17.01.2010
Autor: pokermoe

das heiß einfach , dass das obige element auf das untere abgebildet wird.
also ist zB die 2 fix und die 3 wird auf die 5 abgebildet...du kannst das dann auch anders ( in transpositionen ) schreiben !

Gruß

Bezug
        
Bezug
permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 So 17.01.2010
Autor: pokermoe

ah , ok du verstehst nicht was (1,4) heißt ???
das ist einfach die permutation, die alles fest lässt bis auf 1 und 4
das nennt man dann auch ein transposition !
der kringel ist dann einfach die hintereinander ausführung .
zur kontrolle kannst du es zurückrechnen.

Gruß

Bezug
                
Bezug
permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 So 17.01.2010
Autor: simplify

danke erstmal,aber ich werde aus deiner antwort nicht ganz schlau.
ich weiß,dass (1,4) bedeutet  [mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 3 & 1 & 5} [/mm] ,aber ich weiß nicht genua was ich mir unter [mm] sgn\pi_{2} [/mm] vorstellen muss.
stimmen denn meine anderen berechnungen?

Bezug
                        
Bezug
permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mo 18.01.2010
Autor: pokermoe

Hi

achso, sorry ! Jetzt die antwort:
sgn(pi) ist, falls pi eine permutation ist, das vorzeichen dieser.
das ist wie folgt definiert:
man zeigt , dass sich jede permutation als produkt von transpositionen darstellen lässt. diese darstellung ist i.A. nicht eindeutig, jedoch ob man eine gerade oder eine ungerade anzahl von transpositionen benutzen muss.
wenn man eine gerade anzahl hat , so ist sgn=1 sonst -1.
man kann das ganze auch elementarer über fehlstände definieren (so macht es fischer in seinem LA-buch ). dabei ist ein fehlstand ein tupel (i,j)
sodass i<j aber pi(i)>pi(j) !!
Schau mal hier: http://de.wikipedia.org/wiki/Signum_(Mathematik)

Gruß

Bezug
        
Bezug
permutation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:36 Di 26.01.2010
Autor: simplify

hallo,
ich hab da nochmal eine frage zum aufgabenteil b).und zwar kann ich ja eine fallunterscheidung machen:
1. (x,y)(y,z)
2. (x,y)(z,y)
3. (x,y)(z,w)
das reicht doch,oder?damit wären ja alle fälle abgedeckt.

jetzt hab ich irgendwo gefunden,dass [mm] (x,y)(z,y)=(x,y,z)^{3} [/mm]
was ich nicht ganz verstehe.
kann mir das vielleicht jemand erklären?

Bezug
                
Bezug
permutation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 28.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]