matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrapos.Definit=>Nicht-Degeneriert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - pos.Definit=>Nicht-Degeneriert
pos.Definit=>Nicht-Degeneriert < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pos.Definit=>Nicht-Degeneriert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 17.08.2007
Autor: pusteblume86

Hallo ihr,

ich lerne gerade für meine Zwischenprüfung und bin darauf gestoßen, dass Positivdefinitheit Nicht-Degeneriertheit impliziert.
Das wollte ich nun für mich beweisen, aber scheiter daran..

- V ist ein K-Vektorraum:

- Positiv-definites Skalarprodukt:   <u,u> >0 für alle u [mm] \in [/mm] V mit u [mm] \not= [/mm] 0
- Nicht-Degeneriertheit einer Bilinearform mit Basis [mm] v_1, ...,v_n: [/mm]
B [mm] \in M_n(K) [/mm] (beschreibende Matrix dieser Bilinearform)invertierbar , wenn kein w [mm] \in [/mm] V mit [mm] w\not=0 [/mm] mit <u,w> =0 [mm] \forall [/mm] u [mm] \in [/mm] V


Wie kann man an diesen Beweis herangehen?

ich habe es so versucht:

<u,w> = <u,u>+<u,w>+<w,u>+<w,w>-<u,u>-<w,w>-<w,u> =
               <u+w,u+w> - <u,u> - <w,w> -<w,u>

Nach Voraussetzung ist das Rotgeschriebene kleiner als 0

Aber ich komme nicht weiter und weiß nicht einmal ob es der richtige Ansatz war.

Kann mir da jemand helfen?

Lg Sandra

        
Bezug
pos.Definit=>Nicht-Degeneriert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Fr 17.08.2007
Autor: korbinian

Hallo,
ich komme mit deiner Bilinearform nicht ganz klar.
Ist sie symmetrisch?
Wie ist bei dir "nicht-degeneriert" definiert? Kommen wir hier ohne Matrix aus? Vielleicht so:
  
es gibt kein w [mm]\in[/mm] V mit [mm]w\not=0[/mm]
mit <u,w> =0 [mm]\forall[/mm] u [mm]\in[/mm] V

Gruß korbinian

Bezug
                
Bezug
pos.Definit=>Nicht-Degeneriert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 So 19.08.2007
Autor: pusteblume86

Hallihallo,

Nicht-Degeneriertheit habe ich in der Frage doch extra erklärt gehabt, stimmt also mehr oder weniger mit dem überein was du geschrieben hast.(bis auf den Zusammenhang zu invertierbaren Matrizen)

Ich bin davon ausgegangen, dass es in dem Scriptabsatz, nicht um symmetrische Bilinearformen geht..

Ist der Beweis nur mit symmetrischen Bilinearformen zu machen?


Lg Sandra

Bezug
                        
Bezug
pos.Definit=>Nicht-Degeneriert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 So 19.08.2007
Autor: korbinian

Hallo
ist die Bilinearform nicht symmetrisch muss die Def. von nicht-degeneriert m.E. noch um
es gibt kein [mm] w\not=0 [/mm] mit <w,u>=0 [mm] \forall [/mm] u
ergänzt werden.
Wenn du damit einverstanden bist kannst du doch jetzt einen indirekten Beweis führen
Gruß korbinian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]