matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenpotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - potenzreihe
potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Do 21.02.2008
Autor: lotusbluete

Aufgabe
a)Entwickeln Sie [mm] f(x)=\bruch{1}{\wurzel{1-(ax)²}} [/mm] und g(x)=1+bsinh2x in Potenzreihen ( jeweils bis [mm] a_{6}x^{6} [/mm] )
b) Bestimmen Sie a und b so, dass die Kurve in der Nähe des Koordinatenursprungs möglichst gut übereinstimmen, d.h. die Potzenreihenentwicklung des Fehlers (f(x)-g(x)) mit einer möglichst hohen Potenz von x beginnt.
Wie lautet das erste von Null verschiedene Glied der Potenzreihe des Fehlers?

ich bin leider auch bei dieser Aufgabe überfordert. Vielleicht hilft mir diede auch die andere von mir gestellte Frage zu verstehen.

        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Do 21.02.2008
Autor: Event_Horizon

Hallo!

Das Problem ist hier ganz ähnlich wie in deiner anderen Aufgabe.

Es gibt zwei Möglichkeiten:

Die erste ist, du findest bekannte Potenzreihen, und bastelst dir daraus deine eigene zusammen.

Das ginge z.B. so:

Bekannt ist, daß [mm] e^z=1+z+\frac{1}{2!}z^2+\frac{1}{3!}z^3+... [/mm]

Jetzt ist [mm] \sinh(x)=\frac{e^{+x}+e^{-x}}{2} [/mm]

Jetzt setzt du die Reihe der e-Funktion ein. Denk dran, links ist  z=2x, rechts z=-2x


Danach bringst du da wieder Ordnung rein, sodaß da [mm] f(x)=\Box+\Box*x+\Box*x^2+... [/mm] steht. Das ist deine Potenzreihe.

Ähnliches läßt sich sicher auch mit g(x) machen.

Der Rest sollte dann einfach sein. Du mußt die Differenz der beiden Reihen bilden (und wieder ordnen). Versuche dann, a und b so zu bestimmen, daß die ersten Summanden der Reihe weg fallen!



Allerdings, wenn du keine fertigen Potenzreihen findest, kommst du um eine Taylorentwicklung nicht herum. Denn Potenzreihen sind letztendlich nix anderes als bereits ausgerechnete Taylorentwicklungen.



Aber versuch das damit erstmal.





Bezug
                
Bezug
potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Mi 12.03.2008
Autor: lotusbluete

Ich habe
[mm] f(x)=1+\bruch{1}{2}*ax+\bruch{3}{8}a^2x^2+\bruch{15}{48}a^6x6 [/mm]
[mm] g(x)=1+b+2bx+2bx²+\bruch{8}{6}bx^3+\bruch{2}{3}bx^4+\bruch{4}{15}bx^5+\bruch{4}{45}bx^6 [/mm]

ist es bis hierhin richtig?

Bezug
                        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mi 12.03.2008
Autor: leduart

Hallo
Beide Reihen sind falsch.
Wie hast du die gerechnet?
zu f, etwa f'(0)=0 nur das hab ich nachgerechnet, um zu sehen, dass deine Reihe falsch ist.
zu g wenn man die Reihen für [mm] e^x [/mm] und [mm] e^{-x} [/mm] subtrahiert müssen doch alle glieder mit geraden Exponenten wegfallen?
(wenn man sie addiert alle ungeraden, also lags auch nicht an EHs Vorzeichenfehler.)
Gruss leduart

Bezug
                                
Bezug
potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mi 12.03.2008
Autor: lotusbluete

zu a) habe ich aus der Formelsammlung
[mm] (1-x)^{-\bruch{1}{2}}=1+\bruch{1}{2}x+\bruch{3}{8}x2^+\bruch{15}{48}x^3+... [/mm] und da habe ich für x=ax eingesetzt.
Aber ich muss ja [mm] (ax)^2 [/mm] einsetzen. Dann müsste da [mm] 1+\bruch{1}{2}a^2x^2+\bruch{3}{8}a^4x^4 [/mm] rauskommen, oder?

Bezug
                                        
Bezug
potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mi 12.03.2008
Autor: lotusbluete

bei b) ist mir auch ein kleiner Fehler unterlaufen, das müsste [mm] g(x)=1+b*sinh^2(x) [/mm] heißen.
Da habe ich das durch den cosh ersetzt und nun raus
[mm] 1-\bruch{b}{2}+\bruch{b}{4}*[4x-\bruch{16*x^3}{6}+\bruch{64x^5}{120}] [/mm]

Bezug
                                        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mi 12.03.2008
Autor: leduart

Hallo
Ich hab nur bis [mm] 1/2(ax)^2 [/mm] nachgesehen, das stimmt. Aber du solltest doch wohl sowas nicht nur mit Formelsammlung, sondern auch selbst können. Aber wenns da drin steht, wirds wohl stimmen.
Gruss leduart

Bezug
                                                
Bezug
potenzreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:16 Mi 12.03.2008
Autor: lotusbluete

Aber wenn das stimmt, kommt bei f(x)-g(x) nichts sinnvolles raus. Da die beiden unterschiedliche potenzen haben.

Bezug
                                                        
Bezug
potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 12.03.2008
Autor: lotusbluete

Vllt sind aber auch g(x) nicht?

Bezug
                                                        
Bezug
potenzreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 14.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
potenzreihe: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 12:58 Mi 12.03.2008
Autor: leduart

Hallo EH
Da hat sich ein Vorzeichenfehler eingeschlichen :
[mm] sinhx=\bruch{e^x-e^{-x}}{2} [/mm]
Gruss leduart

Bezug
                        
Bezug
potenzreihe: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 15:43 Mi 12.03.2008
Autor: Event_Horizon

Stimmt mal wieder.

So hab ich auch meine Abi-Klausur geschrieben. Lösungsweg aufgestellt, ausgerechnet, dann hat meine Lösung auf mirakulösen Wegen zu meinen Nachbarn gefunden, und kurz darauf kam dann die debuggte Version zurück...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]