matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenpotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - potenzreihen
potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Mi 31.05.2006
Autor: mycha153

Aufgabe
Wir betrachten die Potenzreihe f(z) = [mm] \summe_{n=1}^{ \infty}c_{n} z^{n} [/mm]  mit reellen oder komplexen
Koeffizienten [mm] c_{n} [/mm] und Konvergenzradius R. Zeige
R = [mm] (\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_{n}|})^{-1} [/mm]  

(Tip: Formuliere das Wurzelkriterium mithilfe das Limes Superior.)

hätte jemand von euch einenn ansatz und einen guten tipp für mich??????????????


Bitte!!!!!!!!!

        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Mi 31.05.2006
Autor: felixf

Hallo!

> Wir betrachten die Potenzreihe f(z) = [mm]\summe_{n=1}^{ \infty}c_{n} z^{n}[/mm]
>  mit reellen oder komplexen
>  Koeffizienten [mm]c_{n}[/mm] und Konvergenzradius R. Zeige
>  R = [mm](\limes sup_{n\rightarrow\infty} \wurzel[n]{|c_{n}|})^{-1}[/mm]
>  
>
> (Tip: Formuliere das Wurzelkriterium mithilfe das Limes
> Superior.)
>  hätte jemand von euch einenn ansatz und einen guten tipp
> für mich??????????????
>  
>
> Bitte!!!!!!!!!

Genau die Frage hatten wir letztens schonmal. Eine Suche nach Konvergenzradius bewirkt Wunder...

LG Felix



Bezug
                
Bezug
potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mi 31.05.2006
Autor: mycha153

ja nur hab ich leider immer noch nicht so ganz verstanden wie man dannach sucht. irgendwie stelle ich mich total dumm an was das thema angeht!

Bezug
                        
Bezug
potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 31.05.2006
Autor: felixf

Hallo!

> ja nur hab ich leider immer noch nicht so ganz verstanden
> wie man dannach sucht. irgendwie stelle ich mich total dumm
> an was das thema angeht!

Rechts oben auf dieser Seite findest du eine Eingabebox, und rechts von dieser ist ein Button ``Suchen''. Du tippst also ``Konvergenzradius'' in diese Eingabebox ein und klickst auf ``Suchen''. Und dann schaust du dir die Ergebnisse an und findest den passenden Beitrag. (Momentan ist er noch auf der ersten Seite mit Suchergebnissen...)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]