matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenpyramide-ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - pyramide-ebene
pyramide-ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pyramide-ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Di 24.07.2007
Autor: der_puma

hi,

Aufgabe 1
gegeben ist die ebenenschar E=2x+(a-3)y+az=6-2a
zeigen sie dass die gerade zu h:x=(3/0/-2)+t(-6/-4/4) in allen ebenen der schar liegt.
Gesucht ist eine ebene H die die gerade h enthält aber nicht zu ebenenschar E gehört


also zu zeiegn dass h in allen ebenen der schar liegt ist einfach das habe ich hingekriegt... meien frage ist aber wie es jetzt weitergeht ?


Aufgabe 2
Eine Ebene enthält die punkte P(6/4/0) Q(4/5/0) und R(0/2/3).
die punkte P, B(2/6/0) , C(0/0/0) bidlen die dreieckige grundfläche einer pyramide mit der spitze S(2/3/6).
Die ebene E schneidet die pyramide in einer dreieckigen schnittfläche . bestimmen sie die koordinaten der eckpunkte dieses dreiecks . berechenn sie den winkel den diese dreieckige schnittfläche mit der grundfläche PBC der pyramide einschliesst.


hier kann ich mri das ganze lediglich vorstellen, aber wie kann ich das berechnen .... also den schnitt von ebene un pyramide??????
gruß

        
Bezug
pyramide-ebene: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 12:53 Di 24.07.2007
Autor: Roadrunner

Hallo der_puma!


Bestimme Dir einen Normalenvektor [mm] $\vec{n}_H$ [/mm] der Ebene $H_$ , welche senkrecht auf den Richtungsvektor der Gerade steht aber linear unabhängig ist vom Normalenvektor der Ebenenschar [mm] $E_a$ [/mm] .


Gruß vom
Roadrunner


Bezug
        
Bezug
pyramide-ebene: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 12:58 Di 24.07.2007
Autor: Roadrunner

Hallo der_puma!


Zunächst einmal die Gleichung für die Ebene [mm] $E_{PQR}$ [/mm] bestimmen. Anschließend die 3 Geradengleichungen der Seitenkanten der Pyramide (also [mm] $g_{PS}$ [/mm] , [mm] $g_{BS}$ [/mm] sowie [mm] $g_{CS}$ [/mm] ).

Die Schnittpunkte dieser 3 Geraden mit der Ebene [mm] $E_{PQR}$ [/mm] ergibt die gesuchten Schnittpunkte. Rechnerisch erhältst Du diese durch Einsetzen/Gleichsetzen der jeweiligen Ebenen- und Geradengleichungen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]