matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10pyramidenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - pyramidenberechnung
pyramidenberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pyramidenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Sa 08.03.2008
Autor: linusall

Aufgabe
a)ein hohlkörper von der form einer regelmässigen 4-seitigen pyramide mit grundkante und höhe a wird, wenn die spitze unten ist, bis zur höhe 2/3 mit wasser gefüllt und dann mit der spitze nach oben gedreht.
wie hoch steht das wasser dann in dem hohlkörper?
b) was ergibt sich in a), wenn der hohlkörper die form einer dreiseitigen pyramide hat?

ich komme mit der hier genannten aufgabe nicht weiter:
wie kann ich denn mit den gegebenen angaben auf die grundseiten der mit wasser gefüllten pyramide kommen?
das volumen des hohlkörpers ist ja a x a x 1/3 x a, also a hoch 3 x 1/3.
von der gefüllten pyramide weiss ich, dass h gleich 2/3 a ist. aber die grundseiten?....
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
pyramidenberechnung: Auch a
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 08.03.2008
Autor: Infinit

Hallo linusall,
nach Aufgabe hat die Grundkante auch die Länge a, die Fläche des Quadrats ist also $ [mm] a^2 [/mm] $.
Viele Grüße,
Infinit

Bezug
        
Bezug
pyramidenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Sa 08.03.2008
Autor: linusall

nein, das kann nicht sein, die mit wasser gefüllte pyramide hat doch nicht ebenfalls die kantenlänge a. sie muss doch kürzer sein als die länge der kante des hohlkörpers??!!!!

Bezug
                
Bezug
pyramidenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 08.03.2008
Autor: Teufel

Hi!

Ich denke, dass hier gemeint ist, dass die Pyramide innen komplett hohl ist und dass die "Wanddicke" der Pyramide vernachlässigbar klein ist.

Ansonsten hätte in der Aufgabe stehen müssen, wie dick die Wänder der Pyramide sind.

Bezug
                        
Bezug
pyramidenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 08.03.2008
Autor: linusall

mir ist klar, dass die grundseite der gedrehten pyramide auch wieder a ist. ich kann aber das volumen der mit wasser gefüllten pyramide nicht rechnen, da ich nicht weiss, wie ich hier auf die neuen grungseiten komme?
die neue höhe ist 2/ 3, aber der rest?..

Bezug
                                
Bezug
pyramidenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Sa 08.03.2008
Autor: abakus

Hallo
in die Pyramide mit der Spitze nach unten wurde Wasser gefüllt. Das Wasser nimmt ja dann auch Pyramidenform an. Die "Wasserpyramide" ist ein Körper, der zum Gefäß (Pyramide) ähnlich ist. Nur dass die "Wasserpyramide" etwas kleiner ist, weil sie nicht den ganzen Behälter ausfüllt.
Sie hat nur 2/3 der Hhe und ist ähnlich .... also ist auch ihre Länge und ihre Breite jeweils nur 2/3 vom Behälter.
Für die Volumenberechnung gehen Länge, Breite und Höhe jeweils als Faktor ein, also ist das Wasservolumen [mm] $(\bruch{2}{3}*\bruch{2}{3}*\bruch{2}{3})=\bruch{8}{27}$ [/mm] des Behältervolumens (und der leere Anteil des Behälters dann [mm] \bruch{19}{27} [/mm] des Volumens. Nach dem Umdrehen bilden diese [mm] \bruch{19}{27} [/mm] die luftgefüllte Spitze der Pyramide.

Überlege, wie hoch diese "Luftpyramide" ist.
Viele Grüße
Abakus

Bezug
                                        
Bezug
pyramidenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Sa 08.03.2008
Autor: linusall

ich komme bei dem luftvolumen auf 19/81 a hoch 3, wenn ich es rechne.
aber in der folge kann ich die höhe im umgekehrten zylinder nicht ermitteln, da ich doch weder grundseiten noch höhe kenne.
wenn ich mein luftvolumen gleich der allgemeinformel für volumen setzte, also gleich 1/3 x G x h, habe ich doch 2 unbekannte, nämlich h und die grundseiten, oder?
sind diese hier dann auch gleich lang?
dann wäre die grundseite und die höhe ja ebenfalls 19/81 a hoch 3?

Bezug
                                                
Bezug
pyramidenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 08.03.2008
Autor: abakus


> ich komme bei dem luftvolumen auf 19/81 a hoch 3, wenn ich
> es rechne.
>  aber in der folge kann ich die höhe im umgekehrten
> zylinder nicht ermitteln, da ich doch weder grundseiten
> noch höhe kenne.
>  wenn ich mein luftvolumen gleich der allgemeinformel für
> volumen setzte, also gleich 1/3 x G x h, habe ich doch 2
> unbekannte, nämlich h und die grundseiten, oder?
>  sind diese hier dann auch gleich lang?
>  dann wäre die grundseite und die höhe ja ebenfalls 19/81 a
> hoch 3?

Richtig.

Auch die "Luftpyramide" ist ähnlich zur Ausgangspyramide. Wir hatten vorhin festgestellt: Wenn sich entsprechende Längen der Körper wir 2:3 verhalten, bilden die Rauminhalte ein Verhältnis von [mm] 2^3:3^3. [/mm] Allgemein: V [mm] \sim a^3 [/mm] .
Dann gilt umgedreht: [mm] \wurzel[3]{V} \sim [/mm] a. Also ist die Höhe der Luftpyramide [mm] \wurzel[3]{\bruch{19}{27}a^3} [/mm]
(und der Wasserstand die restliche Höhe).


Bezug
                                                        
Bezug
pyramidenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 08.03.2008
Autor: linusall

1000 dank, so langsam komme ich dahinter.
ich muss es nochmals schritt für schritt durchdenken, aber es wird mir immer einleuchtender.
schönen abend noch,
linusall
ps. dieses forum ist eine wundervolle einrichtund, danke allen, die mir und anderen schwerblickern damit auf die sprünge helfen.

Bezug
                                                                
Bezug
pyramidenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Sa 08.03.2008
Autor: abakus


> 1000 dank, so langsam komme ich dahinter.
>  ich muss es nochmals schritt für schritt durchdenken, aber
> es wird mir immer einleuchtender.
>  schönen abend noch,
>  linusall

War mir ein Vergnügen.
Abakus



>  ps. dieses forum ist eine wundervolle einrichtund, danke
> allen, die mir und anderen schwerblickern damit auf die
> sprünge helfen.

Gibs irgendwann mal weiter, wenn andere noch schwerer blicken.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]