matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisq-adischer Bruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - q-adischer Bruch
q-adischer Bruch < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Do 24.11.2005
Autor: mathmetzsch

Hallo,

ich soll den Dezimalbruch 0,3333333..., also den Bruch [mm] \bruch{1}{3} [/mm] als 3-adischen bzw. 7-adischen Bruch darstellen. Wie das normalerweise funktioniert, ist mir klar.

Da muss man ja einfach die Zahl durch die jeweilige Basis immer teilen bis am Ende die Null dasteht. Ich weiß aber nicht, wie das mit der Periode funktioniert.

Hier vielleicht mal noch ein Beispiel:
[mm] 55_{10} [/mm] als 7-adischen Bruch:
55:7= 7 Rest 6
7:7=1 Rest 0
1:7=0 Rest 1

Also ist die Zahl 106.

Nur wie mache ich das bei der blöden Periode oder i.A. bei Kommazahlen?

Kann mir da vielleicht jemand helfen? Vielen Dank im Voraus.

VG Daniel

        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 24.11.2005
Autor: Bastiane

Hallo!

> ich soll den Dezimalbruch 0,3333333..., also den Bruch
> [mm]\bruch{1}{3}[/mm] als 3-adischen bzw. 7-adischen Bruch
> darstellen. Wie das normalerweise funktioniert, ist mir
> klar.

Also, bei der Basis 3 ist das doch einfach - das ist genauso wie [mm] \bruch{1}{2} [/mm] zur Basis 2 oder auch wie [mm] \bruch{1}{10}=0,1 [/mm] zur Basis 10. Die Vorkommastellen haben ja die Wertigkeit (von links nach rechts) [mm] 3^n...3^2,3^1,3^0 [/mm] und die Nachkommastellen dementsprechend (ebenfalls von links nach rechts): [mm] 3^{-1}, 3^{-2}, 3^{-3}.... [/mm] Und da [mm] \bruch{1}{3}=3^{-1} [/mm] ist [mm] \left(\bruch{1}{3}\right)_{10}=0,1_3. [/mm]
Dementsprechend ist das dann zur Basis 7 so: [mm] 7^2, 7^1, 7^0, 7^{-1}, 7^{-2},... [/mm] und nun kannst du wieder dein altes Schema anwenden - ich habe gerade mal angefangen, die Darstellung müsste dann so anfangen: 0,22...
Soweit ich weiß kann es trotzdem passieren, dass eine Periode auftritt, dass die Zahl also in der darzustellenden Basis periodisch ist - was man dagegen tun kann (und ob überhaupt) ist mir irgendwie gerade entfallen...

Aber ich glaub', ich habe da hier auch schon mal drüber diskutiert - evtl. findest du eine alte Diskussion, wo etwas dazu gesagt wurde.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
q-adischer Bruch: Multiplikationen
Status: (Antwort) fertig Status 
Datum: 15:28 Do 24.11.2005
Autor: MathePower

Hallo mathmetzsch,

> Hallo,
>  
> ich soll den Dezimalbruch 0,3333333..., also den Bruch
> [mm]\bruch{1}{3}[/mm] als 3-adischen bzw. 7-adischen Bruch
> darstellen. Wie das normalerweise funktioniert, ist mir
> klar.
>  
> Da muss man ja einfach die Zahl durch die jeweilige Basis
> immer teilen bis am Ende die Null dasteht. Ich weiß aber
> nicht, wie das mit der Periode funktioniert.
>
> Hier vielleicht mal noch ein Beispiel:
>  [mm]55_{10}[/mm] als 7-adischen Bruch:
>  55:7= 7 Rest 6
>  7:7=1 Rest 0
>  1:7=0 Rest 1
>  
> Also ist die Zahl 106.
>  
> Nur wie mache ich das bei der blöden Periode oder i.A. bei
> Kommazahlen?

Bei einem echten Bruch [mm]\bruch{z}{n}[/mm] ermittelst Du die p-adische Darstellung wie folgt:

[mm] \begin{gathered} \alpha _0 : = \;z \hfill \\ \alpha _i \;p\; = \;\beta _i \;n\; + \;\gamma _i \hfill \\ \beta _i : = \;\left[ {\frac{{\alpha _i \;p}} {n}} \right] \hfill \\ \gamma _i : = \alpha _i \;p\;\bmod \;n \hfill \\ \alpha _{i + 1} \;: = \;\gamma _i \hfill \\ \end{gathered} [/mm]

Entweder gibt es jetzt Zahlen die sich wiederholen, d.h  es existiert ein k,l [mm]\in\IN_{0}[/mm] mit k > l, so daß [mm]\gamma_{k}\;=\;\alpha_{l} [/mm] ist, oder die p-adische Entwicklung bricht mit 0 ab.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]