matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare Gleichungenquadratische Gleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Nichtlineare Gleichungen" - quadratische Gleichung
quadratische Gleichung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Gleichung: Realteil?
Status: (Frage) beantwortet Status 
Datum: 09:28 Mo 12.01.2009
Autor: wolfshuendchen

Aufgabe
Bestimmen Sie die Koeffizienten b und c so, dass die Lösungen der quadratischen Gleichung  [mm] x^{2} [/mm] + bx + c = 0 den Realteil 3 haben und dass die Lösungen zusammenfallen, wenn c um 1 verkleinert wird.

hallo erstmal ;)

mhm ja, also mein problem vorerst ist nicht, dass ich die aufgabe nicht lösen kann, sondern dass ich keine ahnung habe, was hier mit dem realteil gemeint ist. die Lösung hätte ich ja auch, aber eben den weg dort hin nicht...

beim googeln hab ich nur aufgaben von leuten gefunden, die selbst schon wissen, was ein realteil ist. in meinen unterlagen hab ich auch nix gefunden...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
kann mir jemand den begriff "Realteil" zu den quadratischen Funktionen erklären?

vielen dank
mfg
wolfshuendchen

        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Mo 12.01.2009
Autor: angela.h.b.


> Bestimmen Sie die Koeffizienten b und c so, dass die
> Lösungen der quadratischen Gleichung  [mm]x^{2}[/mm] + bx + c = 0
> den Realteil 3 haben und dass die Lösungen zusammenfallen,
> wenn c um 1 verkleinert wird.
>  hallo erstmal ;)
>  
> mhm ja, also mein problem vorerst ist nicht, dass ich die
> aufgabe nicht lösen kann, sondern dass ich keine ahnung
> habe, was hier mit dem realteil gemeint ist.

Hallo,

[willkommenmr].

ich nehme mal an, daß b und c reell sein sollen.

Die Lösung der quadratischen Gleichung könnten komplex sein, also die Gestalt  [mm] x=r_1+i*r_2 [/mm]  mit  [mm] r_1, r_2\in \IR [/mm] haben.

[mm] r_1 [/mm] ist der Realteil von z, [mm] r_2 [/mm] der Imaginärteil.

Gruß v. Angela

Bezug
                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Mo 12.01.2009
Autor: wolfshuendchen

okay, den teil verstehe ich jetzt...

das heisst ich habe mal eine erste gleichung von

x = 3+ [mm] i*r_{2} [/mm]

jetzt brauche ich natürlich noch eine zweite gleichung...

in welcher beziehung stehen denn b und c ( von [mm] x^{2}+bc+c=0 [/mm] )
zu [mm] r_{1} [/mm] und [mm] r_{2} [/mm] ?

Bezug
                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Mo 12.01.2009
Autor: angela.h.b.


> okay, den teil verstehe ich jetzt...
>  
> das heisst ich habe mal eine erste gleichung von
>  
> x = 3+ [mm]i*r_{2}[/mm]
>  
> jetzt brauche ich natürlich noch eine zweite gleichung...
>  
> in welcher beziehung stehen denn b und c ( von x{2}+bc+c=0
> )
> zu [mm]r_{1}[/mm] und [mm]r_{2}[/mm] ?


Hallo,

über [mm] \IC [/mm] zerfallen Polynome in Linearfaktoren.

Du weißt also: es ist

[mm] x_{2}+bc+c=(x-z)(x-z'), [/mm]   z,z' sind die beiden Nullstellen.

Wenn Du nun die Klammern auflöst, siehst Du per Koeffizientenvergleich die Beziehung  der Nullstellen zu den Koeffizienten.

Da Du im Hochschulforum postest, denke ich eigentlich, daß Du das weißt, aber trotzdem, sicherheitshalber::

wenn b und c reell  reell sind, und [mm] z=r_1+ir_2 [/mm]  eine Lösung ist, dann ist [mm] z'=r_1-ir_2 [/mm] die zweite der Lösungen.

Gruß v. Angela

Bezug
                                
Bezug
quadratische Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:15 Mo 12.01.2009
Autor: wolfshuendchen

ich verstehe noch nicht, wieso man die gleichungen mit den nullstellen braucht ^^' (abgesehn davon wäre ich wohl nie auf eine solche idee gekommen, diese gleichzusetzen)
also war mit x vom anfang eine nullstelle gemeint?

dann habe ich 5 gleichungen aufgestellt und diese in meinen TR eingegeben, und darauf folgte eine geraume anzahl an lösungen, die ich nicht weiss wie aussortieren..

die gleichungen:

[mm] x_{01}=3+i*r_{2} [/mm]
[mm] x_{02}=3-i*r_{2} [/mm]
[mm] x^{2}+bx+c=(x-x_{01})(x-x_{02}) [/mm]
[mm] (3+i*r_{2})^{2}+b*(3+i*r_{2})+c=0 [/mm]
[mm] (3-i*r_{2})^{2}+b*(3-i*r_{2})+c=0 [/mm]

Eine Lösung war b=-6 und c=9
die angaben vom lehrer waren aber b=-6 und c=10 ^^'

Bezug
        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 12.01.2009
Autor: fred97

Du mußt doch 2 quadr. Gleichungen betrachten !!!!


(........."und dass die Lösungen zusammenfallen, wenn c um 1 verkleinert wird". so stehts oben !!)

Fangen wir mit der 2. Gl. an:

[mm] $x^2 [/mm] +bx+c-1 = 0.$

Mit der pq-Formel sieht man: die Lösungen dieser Gleichung fallen zusammen [mm] \gdw \bruch{b^2}{4} [/mm] = c-1.


Nun zur 1. Gl.:

[mm] $x^2 [/mm] +bx+c = 0.$


Mit der pq-Formel und mit [mm] \bruch{b^2}{4} [/mm] = c-1 sieht man:

Diese Gl. hat die Lösungen  $-b/2 [mm] \pm [/mm] i$

Der Realteil dieser Lösungen soll 3 sein , also ist b=-6.  Aus  [mm] \bruch{b^2}{4} [/mm] = c-1 folgt dann c= 10


FRED

Bezug
                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Mo 12.01.2009
Autor: wolfshuendchen

ich kenne zwar den satz von vieta (also pq-Formel)
kann dir aber trotzdem nicht folgen, wie du auf
$ [mm] \gdw \bruch{b^2}{4} [/mm] $ = c-1  kommst!

aber du hast recht, die beiden lösungen wurde zuvor ausser acht gelassen :S

Bezug
                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 12.01.2009
Autor: angela.h.b.


> ich kenne zwar den satz von vieta (also pq-Formel)
>  kann dir aber trotzdem nicht folgen, wie du auf
>  [mm]\gdw \bruch{b^2}{4}[/mm] = c-1  kommst!
>  

Hallo,

die Lösungen von [mm] x^2+bx+(c-1)=0 [/mm]

sind [mm] x_1=-\bruch{b}{2}+\wurzel{\bruch{b^2}{4} -(c-1)} [/mm] und [mm] x_2=-\bruch{b}{2}\green{-}\wurzel{\bruch{b^2}{4} -(c-1)}. [/mm]

Wenn die nun gleich sind, kann das ja nicht anders passieren, als daß man unter der Wurzel  0 hat.

Gruß v. Angela


Bezug
                                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 12.01.2009
Autor: wolfshuendchen

also die Diskriminante muss null sein, aber woher wisst ihr, dass es da nur eine Lösung geben soll?
(den rest hab ich jetzt begriffen ^^)

Bezug
                                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mo 12.01.2009
Autor: angela.h.b.


> also die Diskriminante muss null sein, aber woher wisst
> ihr, dass es da nur eine Lösung geben soll?
>  (den rest hab ich jetzt begriffen ^^)

Hallo,

stell Dir vor, wir suchen eine Zahl  x so, daß bei [mm] 5\red{+}x [/mm] und [mm] 5\red{-}x [/mm]  dasselbe herauskommt.

Probieren wir mal aus, ob 0.1 eine Lösung ist:
[mm] 5\red{+}0.1=5.1 [/mm] und [mm] 5\red{-}0.1=4.9. [/mm]
Also ist 0.1 keine Lösung,
und Dir wird schnell klar sein, daß die einzige Lösung x=0 ist, wenn [mm] 5\red{+}x [/mm] und [mm] 5\red{-}x [/mm]  gleich sein sollen.

bei der Lösung der  Quadratischen Gleichung bekommst Du zwei Lösungen, welche sich durchs Vorzeichen vor der Wurzel unterscheiden.

Sollen die Lösungen gleich sein, muß die Wurzel =0 sein, und das ist sie nur, wenn das, was unter der Wurzel steht, =0 ist.


> also die Diskriminante muss null sein, aber woher wisst
> ihr, dass es da nur eine Lösung geben soll?

Oder meinst Du was ganz anderes...
Wir wissen das, weil wir die Aufgabe durchgelesen haben, wo gefordert ist, "...dass die Lösungen zusammenfallen, wenn c um 1 verkleinert wird".

"Die Lösungen" ist hier als "die beiden Lösungen der Gleichung" zu lesen, und "zusammenfallen" als "sollen gleich sein".

Gruß v. Angela






Bezug
                                                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Mo 12.01.2009
Autor: wolfshuendchen

okay, klingt logisch
nur ist mir trotzdem wieder aufgefallen, dass ich diesen satz von FRED nicht
nachvollziehen kann:


Diese Gl. hat die Lösungen  $ -b/2 [mm] \pm [/mm] i $
i ist ja dabei wieder die imaginäre Zahl oder?
und welche gleichung ist gemeint?

(ich weiss ich bin hartnäckig ^^' )


Bezug
                                                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Mo 12.01.2009
Autor: angela.h.b.


> okay, klingt logisch
>  nur ist mir trotzdem wieder aufgefallen, dass ich diesen
> satz von FRED nicht
> nachvollziehen kann:
>  
>
> Diese Gl. hat die Lösungen  [mm]-b/2 \pm i[/mm]
>  i ist ja dabei
> wieder die imaginäre Zahl oder?
>  und welche gleichung ist gemeint?
>  
> (ich weiss ich bin hartnäckig ^^' )

Du solltest viel genau lesen, und zwar mit einem Stift in der Hand:

er schreibt doch, daß die 1. Gleichung gemeint ist, also [mm] x^2+bx+c=0, [/mm] und er sagt auch, wie er aufs Ergebnis kommt:

Die Gleichung mit pq-Formel lösen  (mach das spätestens jetzt, falls Du's noch nicht hast)

und dann das zuvor gewonnene [mm] \bruch{b^2}{4}=c-1 [/mm] verwenden. Was bleibt dann unter der Wurzel?

Gruß v. Angela


Bezug
                                                                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mo 12.01.2009
Autor: wolfshuendchen

nur weil ichs nicht verstehe heisst das nicht, dass ich nicht richtig lese...

ich frage mich ja nur, wo man denn das

[mm] \bruch{b^{2}}{4}= [/mm] c-1
in die formel (für die 1. gleichung)

[mm] x=-\bruch{p}{2}\wurzel{(\bruch{p}{2})^{2}-q} [/mm]
einsetzen können soll...

hier ist doch wieder nur eine lösung?



Bezug
                                                                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 12.01.2009
Autor: fred97

Gaaaaaaaaaaanz ausführlich:



Die Gl.

[mm] $x^2+bx+c [/mm] =0$

hat die Lösungen

$ [mm] x_1=-\bruch{b}{2}+\wurzel{\bruch{b^2}{4} -c} [/mm] $ und $ [mm] x_2=-\bruch{b}{2}\green{-}\wurzel{\bruch{b^2}{4} -c}. [/mm] $

Da [mm] \bruch{b^2}{4} [/mm] = c-1 ist, erhlten wir

$ [mm] x_1=-\bruch{b}{2}+\wurzel{c-1-c} [/mm] $ und $ [mm] x_2=-\bruch{b}{2}\green{-}\wurzel{c-1-c}. [/mm] $


also

[mm] $x_1 [/mm] = [mm] -\bruch{b}{2} [/mm] + i $  und [mm] $x_2 [/mm] = [mm] -\bruch{b}{2} [/mm] - i $


FRED

Bezug
                                                                                
Bezug
quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Mo 12.01.2009
Autor: wolfshuendchen

und wieso genau wird aus dem -1
die imaginäre Zahl?

gibt es irgenwo einen gescheiten theorie block für "Realteil von Zahlen"
oder sowas in der form? ^^'

Bezug
                                                                                        
Bezug
quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Mo 12.01.2009
Autor: fred97


> und wieso genau wird aus dem -1
>  die imaginäre Zahl?
>  


Von komplexen Zahlen scheinst Du keine Ahnung zu haben. Habt Ihr diese Zahlen noch nicht behandelt ?

Es ist     $ [mm] i^2 [/mm] = -1$



> gibt es irgenwo einen gescheiten theorie block für
> "Realteil von Zahlen"
>  oder sowas in der form? ^^'



Eine komplexe Zahl ist von der Form  $ z = x+iy$, wobei x,y [mm] \in \IR [/mm]

Der Realteil von z ist x, der Imaginärteil von z ist y


FRED

Bezug
                                                                                                
Bezug
quadratische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mo 12.01.2009
Autor: wolfshuendchen

Vielen Dank!
Ich hoffe bei der nächsten Aufgabe begreif ich das ganze schneller ;)

mfg
wolfshuendchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]