matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemerang der koeffizientenmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - rang der koeffizientenmatrix
rang der koeffizientenmatrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rang der koeffizientenmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Fr 05.01.2007
Autor: lisamaria

Hallo,
arbeite gerade an einem Vortrag für höhere Geometrie hab bei meinen Unterlagen ein Problem, hoffe Ihr könnt mir helfen!

Sei A [mm] \in \IR^{9xn} [/mm] und x [mm] \in \IR^{1x9} [/mm]
Sei Ax=0
(Also lineares homogenes Gleichungssystem mit n Gleichungen und 9 Unbekannten)
Damit die Lösung eindeutig ,bis auf einen skalaren Faktor ist (triviale Lsg x=0 wird ausgeschlossen)
dafür muss Rang A = 8 sein!  WARUM???
Lg lisa
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
rang der koeffizientenmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Fr 05.01.2007
Autor: Volker2

Hallo Lisamaria,

dass die Lösung eindeutig bis auf Skalare ist, bedeutet, dass der Kern der Matrix $A$ die Dimension $1$ hat. Das ist aber nach der Dimensionsformel für Kern und Bild einer linearen Abbildung genau dann der Fall, falls der Rang $A$, der ja als die Dimension des Bildes von $A$ definiert werden kann, $9-1=8$ ist. Ich hoffe, das ist eine für Dich verständliche Erklärung gewesen.

Gruß, Volker.

Bezug
                
Bezug
rang der koeffizientenmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Fr 05.01.2007
Autor: lisamaria

Lieber Volker,
Super, danke !!
Ist jetzt völlig klar!
LG Lisa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]