matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrarationale Lösungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - rationale Lösungen
rationale Lösungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rationale Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mo 21.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo liebe Helfenden,

ich habe mal wieder ein Problemchen.

Die drei Zahlen t, u und v stehen in folgendem Zusammenhang:
[mm] t^2 [/mm] = 156 - [mm] v^2 [/mm]
[mm] u^2 [/mm] = 133 - [mm] v^2 [/mm]

Ich würde gerne wissen, ob es rationale Tripel (t,u,v) gibt, die diese Gleichungen erfüllen.

Natürlich habe ich diese Frage nur in diesem Forum gestellt; leider habe ich keine Ahnung (mehr), wie man hier die Existenz rationaler Lösungen zeigen oder ausschließen kann.

Hugo

        
Bezug
rationale Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Di 22.02.2005
Autor: FriedrichLaher

Hallo Hugo,

wenn Du die 2te nach v² umstellst und in die 1te einsetzt
hast Du die Antwort fast schon:
ersteinmal beliebig viele rationale (t,u),
einsetzen
in v² = 133 - u²
erfordert dann einen Nenner 2*m²
...
und nach quadratischer Ergänzung
ist
wieder (a+b)(a-b) anwendbar,

Bezug
                
Bezug
rationale Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:46 Fr 25.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Friedrich,

ich hab versucht, deinen Vorschlag nachzuvollziehen, bin aber kläglich gescheitert.

Ich hatte leider einen Fehler in der Angabe gemacht; die Gleichungen lauten:
(1) [mm] t^2+v^2=156^2 [/mm]
(2) [mm] u^2+v^2=133^2 [/mm]
Ich hatte also bei den Zahlen die Quadrate vergessen.

Das macht aber nix, weil sich beim Einsetzen einer Gleichung in die andere statt:
[mm] t^2-u^2=23 [/mm] die Gleichung
(3) [mm] t^2-u^2=289\cdot23 [/mm] ergibt, d.h. die Lösungen die oberen Gleichung unterscheiden sich von denen der unteren um den Faktor 17, der ja zum Glück ziemlich rational ist.

Mein Problem ist eigentlich immer noch, dass ich immer nur eine der drei Gleichungen rational lösen kann, die anderen werden dann nicht erfüllt.

Es ist übrigens inzwischen nicht mehr sooo wichtig, weil mir (wie ich festgestellt habe) auch rationale Lösungen in diesem Fall nicht weiterhelfen (wie ich es ursprünglich vermutet hatte).

Ich würde aber dennoch gerne wissen, ob dieses Gleichungssystem auch nichttriviale rationale Lösungen besitzt.

Klar ist, dass (t,u,v)=(156,133,0) in vier Vorzeichenvarianten eine Lösung ist. Ich behaupte aber, dass es keine weiteren rationalen Lösungen gibt.

Hugo

Bezug
                        
Bezug
rationale Lösungen: Lösungsidee
Status: (Antwort) fertig Status 
Datum: 12:01 Fr 25.02.2005
Autor: Nimue

Hi
Was haltet ihr davon über Pythagoräische Tripel zu argumentieren. Das war das erste, was mir bei den Gleichungen eingefallen ist.
Und nach langem rumprobieren ist mir aufgefallen, daß 133²=u²+v² nur die triviale Lösung u=133, v=0 (bzw. umgekehrt) hat.
Grüße
Nimue


Bezug
                                
Bezug
rationale Lösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Fr 25.02.2005
Autor: Stefan

Hallo Nimue!

Ich fürchte du hast dir aber nur die ganzzahligen Lösungen angeschaut, oder?

Gefragt war ja ob es weitere rationale Lösungen gibt.

Viele Grüße
Stefan

Bezug
                                        
Bezug
rationale Lösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Fr 25.02.2005
Autor: Nimue

Hi Stefan

ups.... Wer lesen kann ist klar im vorteil :). Habs irgendwie geschafft diesen Teil total zu ignorieren. Danke.

Gruß
Nimue

Bezug
                                
Bezug
rationale Lösungen: pythagoreische Tripel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Fr 25.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Nimue,

diese Idee hatte ich auch schon, aber wie Stefan richtig erkannt hat, geht es darum, Lösungen in [mm] \IQ^3 [/mm] zu finden, d.h. z.B.
[mm] \left(\frac{3}{5}\cdot133\right)^2 [/mm] + [mm] \left(\frac{4}{5}\cdot133\right)^2 [/mm] = [mm] 133^2 [/mm]
ist eine mögliche Lösung.

Ich hab auf diesem Weg schon einige Tripel durchprobiert, aber ohne Erfolg.

Das Prinzip ist immer das Gleiche:
156 bzw. 133 werden durch die Hypotenuse geteilt, so das zusammen mit den Katheten k und l immer eine Lösung der einzelnen Gleichungen entsteht, z.B.
[mm] \left(\frac{36}{325}\cdot133\right)^2 [/mm] + [mm] \left(\frac{323}{325}\cdot133\right)^2 [/mm] = [mm] 133^2 [/mm]
[mm] \left(\frac{36}{164}\cdot156\right)^2 [/mm] + [mm] \left(\frac{160}{164}\cdot156\right)^2 [/mm] = [mm] 156^2 [/mm]
[mm] \left(\frac{36}{111}\cdot12345\right)^2 [/mm] + [mm] \left(\frac{105}{111}\cdot12345\right)^2 [/mm] = [mm] 12345^2 [/mm]
[mm] \left(\frac{36}{85}\right)^2 [/mm] + [mm] \left(\frac{77}{85}\right)^2 [/mm] = 1

Es geht im Grunde immer nur um pythagoreische Tripel mit der Hypotenuse 1, den Rest kann man sich zurechtmultiplizieren.
Hugo

Bezug
                        
Bezug
rationale Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Fr 25.02.2005
Autor: FriedrichLaher

ja, ist und bleibt falsch, nicht nur arithmetik, auch das h ist nicht richtig eingesetz :(
Hallo, Hugo, alle

ist der Anhang nun ein Beweis der Unlösbarkeit?
[a]Datei-Anhang

Gruß F.

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
                                
Bezug
rationale Lösungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Fr 25.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Friedrich,

ich habe deine Lösung mal durchgesehen und verstehe jetzt, worauf du hinaus willst.

Leider sind einige Fehler drin, z.B. 489 statt 289, deswegen hab ich sie mal als fehlerhaft markiert. Z.B. kann ich dadurch die zweite Zerlegung gemäß der dritten binomischen gar nicht mehr durchführen (außer ich hab nmich selbst auch verrechnet).

Aber Danke für deine Hilfe.

Hugo

Bezug
                                        
Bezug
rationale Lösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Fr 25.02.2005
Autor: FriedrichLaher

Hallo Hugo,

ist halt ein "Kampf"; hier ein hoffentlich richtigerer und übersichtlicherer
Ansatz, aber den weiterführen davor graut mir.
[a]Datei-Anhang

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
                                                
Bezug
rationale Lösungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 So 27.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Friedrich,

danke für die Mühe, die du dir für mich gemacht hast.

Ich habe wenigstens das Gefühl, dass ich nicht so doof bin, wie ich anfangs gedacht habe. Offensichtlich geht es wohl nicht so leicht, diese Frage zu beantworten.

Ich werde außerdem das Gefühl nicht los, dass man sich nur im Kreis dreht. Statt der Zahlen t und u hat man dann 2 neue Zahlen, mit denen man das Spiel wieder von vorne beginnen muss.

Auf jeden Fall Danke

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]