matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorierationale Zahlen - Riemann
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - rationale Zahlen - Riemann
rationale Zahlen - Riemann < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rationale Zahlen - Riemann: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 16:27 Mo 03.06.2013
Autor: Infostudent

Hallo,

sei [mm] q_n [/mm] eine Abzählung von [mm] \IQ [/mm] und [mm] f_n [/mm] : [0,1] -> [mm] \IR [/mm] definiert durch

[mm] f_n(x) [/mm] = [mm] \begin{cases} 0, & \mbox{wenn } x \in \{q_k | k\leq n \}\\ 1, & \mbox{sonst} \end{cases} [/mm]

Warum sind nun alle [mm] f_n [/mm] riemann-integrierbar? So wie ich das sehe, ist das ja die Identitätsfunktion rationaler Zahlen eingeschränkt auf die ersten n Glieder der Abzählung. D.h. aber dann doch, dass ich irgendwo im Wertebereich Unstetigkeitsstellen bekomme, wo dann Ober- und Untersumme nicht mehr übereinstimmen. Was übersehe ich da?

        
Bezug
rationale Zahlen - Riemann: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 03.06.2013
Autor: Marcel

Hallo,

> Hallo,
>  
> sei [mm]q_n[/mm] eine Abzählung von [mm]\IQ[/mm] und [mm]f_n[/mm] : [0,1] -> [mm]\IR[/mm]
> definiert durch
>  
> [mm]f_n(x)[/mm] = [mm]\begin{cases} 0, & \mbox{wenn } x \in \{q_k | k\leq n \}\\ 1, & \mbox{sonst} \end{cases}[/mm]
>  
> Warum sind nun alle [mm]f_n[/mm] riemann-integrierbar? So wie ich
> das sehe, ist das ja die Identitätsfunktion rationaler
> Zahlen eingeschränkt auf die ersten n Glieder der
> Abzählung.

bitte? Identitätsfunktionen sind sowas: $X [mm] \ni [/mm] x [mm] \mapsto [/mm] x [mm] \in X\,.$ [/mm] Das ist die Identität auf [mm] $X\,.$ [/mm]
Du meinst die charakteristische Funktion, bzw. Indikatorfunktion. Und [mm] $f_n$ [/mm] ist
nicht die Indikatorfunktion, sondern es ist [mm] $f_n(x):\equiv1-\mathds{1}_{\{q_k | k\leq n \}}(x)\,.$ [/mm]

> D.h. aber dann doch, dass ich irgendwo im
> Wertebereich Unstetigkeitsstellen bekomme, wo dann Ober-
> und Untersumme nicht mehr übereinstimmen. Was übersehe
> ich da?

?? Die [mm] $f_n$ [/mm] haben doch nur endlich viele Unstetigkeitsstellen, und es geht um
die Existenz eines BESTIMMTEN Riemann-Integrals! Nicht unerwähnt lassen sollte
man allerdings die (offensichtliche) Beschränktheit der [mm] $f_n$! [/mm]

Weiteres kannst Du auch []hier nachlesen!

Gruß,
  Marcel

Bezug
                
Bezug
rationale Zahlen - Riemann: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mo 03.06.2013
Autor: Infostudent

Um das mal in Prosa zu formulieren, heißt das also, dass die Unstetigkeitsstellen nicht wie beim Grenzwert unendlich fein werden und man deshalb die riemannschen Treppenfunktionen wie gehabt dazwischenlegen kann (z.B. von einer Unstetigkeitsstelle zur nächsten)?

Und ja, Identitätsfunktion war natürlich Quatsch.

Bezug
                        
Bezug
rationale Zahlen - Riemann: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mo 03.06.2013
Autor: Marcel

Hallo,

> Um das mal in Prosa zu formulieren, heißt das also, dass
> die Unstetigkeitsstellen nicht wie beim Grenzwert unendlich
> fein werden und man deshalb die riemannschen
> Treppenfunktionen wie gehabt dazwischenlegen kann (z.B. von
> einer Unstetigkeitsstelle zur nächsten)?

naja, Du hast hier immer endlich viele Unstetigkeitsstellen. Die können also,
in Prosa formuliert, "nicht ganz dicht" sein ;-) Es sind sozusagen auch
isolierte Unstetigkeitsstellen. Mach's Dir doch nicht zu schwer, wenn Dir
das noch nicht ganz klar ist:
Um sich die Aussage mit endlich vielen Unstetigkeitsstellen klarzumachen,
reicht es eigentlich, sich mal die Aussage mit einer einzigen Unstetigkeitsstelle
klarzumachen (ähnlich wie bei manchen Induktionsbeweisen; z.B. kann man
das verallgemeinerte Assoziativgesetz eigentlich einsehen, wenn man
überhaupt erstmal das Assoziativgesetz für 3 Elemente eingesehen hat).

Nimm' mal an, es wäre [mm] $q_1=1/2\,.$ [/mm] Dann ist
[mm] $$f_1(x)=1 \text{ für }x \not=1/2 \text{ und }f(1/2)=0\,.$$ [/mm]

Was wäre hier [mm] $\int_0^1 f_1(x) dx\,,$ [/mm] und warum?

Tipp:
[mm] $$\int_0^1 f_1(x)dx=\int_0^{1/2}f_1(x)dx+\int_{1/2}^1 f_1(x)dx\,,$$ [/mm]
wobei zu beachten ist, dass beide Integrale rechterhand existieren!

Das ich das nur so beispielhaft mache, liegt einfach daran, dass es im Link
auch (ganz) allgemein beschrieben wird. Und wenn Du an der Aussage im
Link zweifelst, dann schreibe Dir das alles mal per Definitionem hin, dann
wirst Du es einsehen!

Gruß,
  Marcel

Bezug
                                
Bezug
rationale Zahlen - Riemann: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Mo 03.06.2013
Autor: Infostudent

Ja, was du aufgeschrieben hast, meinte ich mit meinem letzten Post auch. Im Prinzip ist schon jetzt alles klar. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]