matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorierechtseitig stetiges Martingal
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - rechtseitig stetiges Martingal
rechtseitig stetiges Martingal < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechtseitig stetiges Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Mi 21.03.2012
Autor: hula

Hallöchen,

In einem Beweis, verstehe ich folgende Aussage nicht ganz:

Sei [mm] $M=(M_t)$ [/mm] eine rechtseitig stetiges Martingal, dann definiert man

[mm]\tau_1:=\inf\{t\ge 0| M_t>c\}[/mm]

für ein $c>0$.

Dies ist eine Stopzeit, da die Menge [mm] $\{M_t>c\}=\{M_t\le c\}^c$ [/mm] und letzteres ist [mm] $\mathcal{F}_t$-messbar, [/mm] da $M$ ein Martingal ist. Richtig?

Nun wird gesagt, dass auf der Menge [mm] $\{\tau_1\le t\}$ [/mm] folgendes gilt:

[mm] M_{\tau_1\wedge t}=M_{\tau_1}\ge c[/mm]

Weil $M$ rechtsseitig stetig ist. Wieso wird hier rechtsseitige Stetigkeit gebraucht?

Dankeschöööööön

hula

        
Bezug
rechtseitig stetiges Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mi 04.04.2012
Autor: Gonozal_IX

Hiho,

> Weil [mm]M[/mm] rechtsseitig stetig ist. Wieso wird hier
> rechtsseitige Stetigkeit gebraucht?

ganz banal gesagt, weil die Folgerung sonst nicht gelten würde ;-)

Mach dir das mal an einer ganz "normalen" nicht rechtsstetigen Funktion im Rellen klar, bspw. der [mm] $\text{sgn}$ [/mm] - Funktion.

Definieren wir:

$ [mm] \tau_1:=\inf\{t\ge 0| \text{sgn}(t)> 0.1 \} [/mm] $

Dann ist [mm] $\tau_1 [/mm] = 0$, aber [mm] $\text{sgn}(\tau_1)=\text{sgn}(0) [/mm] = 0$.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]