matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenrekursiv -> explizit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - rekursiv -> explizit
rekursiv -> explizit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursiv -> explizit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 09.10.2010
Autor: sTuDi_iDuTs

Aufgabe
die Folge [mm] a_{n} [/mm] definiert durch [mm] 3a_{n-1}-2a_{n-2} [/mm] mit [mm] a_1=2 [/mm] und [mm] a_2=3 [/mm] soll explizit angegeben werden.

Hallo zusammen,
meine Nachhilfeschülerin hat diese Aufgabe gekommen, die ich leider nicht lösen konnte. Vielleicht steh ich auf'm Schlauch...
Die Überlegungen dazu waren:
[mm] a_3=5, a_4=9, a_5=17, a_6=33,... [/mm]
1.) von ihr: [mm] a_n=2+2*(2^{n-2}) [/mm] funktioniert aber nicht!
2.) gemeinsam: von [mm] a_1 [/mm] nach [mm] a_2 "+2^0", [/mm] von [mm] a_2 [/mm] nach [mm] a_3 "+2^1, [/mm] von [mm] a_3 [/mm] nach [mm] a_4 "+2^2" [/mm] usw. deshalb hatten wir vermutet: [mm] 2+2^0+2^1+2^2+... [/mm] aber das können wir in keine Formel packen...
Kann mir dabei jemand helfen?

        
Bezug
rekursiv -> explizit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Sa 09.10.2010
Autor: M.Rex

Hallo

Schreib das ganze doch sinnvollerweise mal mit dem Summenzeichen:

Also:

[mm] 2+2^0+2^1+2^2+... [/mm]
[mm] =2+\summe_{i=0}^{n}2^{\Box} [/mm]

Überlege jetzt mal selber, was für die Box einsetzen musst

Marius




Bezug
                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Sa 09.10.2010
Autor: abakus


> Hallo
>  
> Schreib das ganze doch sinnvollerweise mal mit dem
> Summenzeichen:
>  
> Also:
>  
> [mm]2+2^0+2^1+2^2+...[/mm]
>  [mm]=2+\summe_{i=0}^{n}2^{\Box}[/mm]
>  
> Überlege jetzt mal selber, was für die Box einsetzen
> musst
>  
> Marius
>  
>
>  

Außerdem könnte man an den Zahlenbeispielen auch erkennen, dass gilt:
[mm] a_3=4+1 [/mm]
[mm] a_4=8+1 [/mm]
[mm] a_5=16+1 [/mm]
[mm] a_6=32+1 [/mm]
Gruß Abakus


Bezug
                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 Sa 09.10.2010
Autor: sTuDi_iDuTs

Ja klar!
Danke, ich stand wohl richtig auf dem Schlauch =)

Bezug
                
Bezug
rekursiv -> explizit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Sa 09.10.2010
Autor: sTuDi_iDuTs

mit dieser Formel komm ich aber nie auf mein erstes Folgenglied!
[mm] a_1=2 [/mm]
außerdem dürfen/können die Schüler in der 13. Klasse nicht mit Summenzeichen umgehen...

Bezug
                        
Bezug
rekursiv -> explizit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Sa 09.10.2010
Autor: ChopSuey

Hi,

abakus' Überlegungen führen Dich zu $ [mm] a_n [/mm] = [mm] 2^n [/mm] + 1 $ mit $ n = [mm] \{0,1,2,...\} [/mm] $

Grüße
ChopSuey

Bezug
                                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Sa 09.10.2010
Autor: M.Rex

Hallo


> Hi,
>  
> abakus' Überlegungen führen Dich zu [mm]a_n = 2^n + 1[/mm] mit [mm]n = \{0,1,2,...\}[/mm]

Nicht ganz. Der Exponent passt so noch nicht ;-)

Marius

>  
> Grüße
>  ChopSuey


Bezug
                                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Sa 09.10.2010
Autor: ChopSuey

Hi Marius,

ich sehe bisher keinen Fehler.

$ [mm] a_0 [/mm] = 2 $
$ [mm] a_1 [/mm] = 3 $
$ [mm] a_2 [/mm] = 5 $
$ [mm] a_3 [/mm] = 9 $
$ [mm] a_4 [/mm] = 17 $

Wenn ich abakus' Zahlen trauen darf, sollte das doch stimmen, oder?

Grüße
ChopSuey

Bezug
                                                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Sa 09.10.2010
Autor: M.Rex

Hallo

Wenn ich mir diese Zahlen als Startwert anschaue

$ [mm] a_3=4+1 [/mm] $
$ [mm] a_4=8+1 [/mm] $
$ [mm] a_5=16+1 [/mm] $
$ [mm] a_6=32+1 [/mm] $

komme ich auf [mm] 2^{n-1}+1 [/mm]

Marius


Bezug
                                                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Sa 09.10.2010
Autor: ChopSuey

Hallo Marius,

achso, das war gemeint. Ja, richtig. Die Indizes stimmten nicht.

Danke für den Hinweis!

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]