matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehrerekursive Def. mit Auswahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - rekursive Def. mit Auswahlen
rekursive Def. mit Auswahlen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Def. mit Auswahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:20 Fr 26.04.2013
Autor: tobit09

Hallo zusammen!


Aufgabe 1
Sei [mm] $\emptyset\not=X\subseteq\IR$ [/mm] mit der Eigenschaft, dass für alle [mm] $x\in [/mm] X$ ein [mm] $y\in [/mm] X$ mit $x<y$ existiert. Dann existiert eine Folge [mm] $x_0



Naiver Beweis:
Wir konstruieren [mm] $(x_n)_{n\in\IN_0}$ [/mm] rekursiv:
Da [mm] $X\not=\emptyset$ [/mm] existiert ein [mm] $x_0\in [/mm] X$.
Sei nun [mm] $x_n\in [/mm] X$ konstruiert für ein [mm] $n\in\IN_0$. [/mm] Dann existiert ein [mm] $x_{n+1}\in [/mm] X$ mit [mm] $x_n Auf diese Weise erhalten wir eine Folge der gewünschten Art.

Unklar ist hierbei, warum die rekursive "Definition" trotz Auswahlmöglichkeit in jedem Schritt möglich ist.

Daher präziser Beweis:
Gemäß Auswahlaxiom existiert eine Familie [mm] $(y_x)_{x\in X}$ [/mm] mit [mm] $y_x>x$ [/mm] für alle [mm] $x\in [/mm] X$. Da $X$ nichtleer ist, existiert ein [mm] $x\in [/mm] X$. Nach dem Satz über rekursive Definitionen gibt es (genau) eine Folge [mm] $(x_n)_{n\in\IN_0}$ [/mm] mit [mm] $x_0=x$ [/mm] und [mm] $x_{n+1}=y_{x_n}$. [/mm] Diese leistet offenbar das Gewünschte.

Auf diese Weise bin ich es gewöhnt, naiv formulierte rekursive Konstruktionen mit Auswahlen in jedem Schritt zu akzeptieren. Denn man könnte sie ja problemlos präzise umformulieren.

Dachte ich zumindest, bis mir in einem Beweis eine Argumentation der folgenden Art begegnete:

Aufgabe 2
Sei [mm] $\mathcal{A}$ [/mm] eine nichtleere "Klasse" von Mengen mit der Eigenschaft, dass für alle [mm] $A\in\mathcal{A}$ [/mm] ein [mm] $B\in\mathcal{A}$ [/mm] mit [mm] $A\subsetneq [/mm] B$ existiert. Folgt dann die Existenz einer Folge [mm] $(A_n)_{n\in\IN_0}$ [/mm] von Mengen aus [mm] $\mathcal{A}$ [/mm] mit [mm] $A_0\subsetneq A_1\subsetneq A_2\subsetneq\ldots$? [/mm]



Naiv würde man wohl ja sagen und wie oben argumentieren:

Wir konstruieren eine solche Folge rekursiv:
Da [mm] $\mathcal{A}$ [/mm] nichtleer ist, existiert ein [mm] $A_0\in\mathcal{A}$. [/mm]
Sei nun [mm] $A_n$ [/mm] konstruiert für ein [mm] $n\in\IN_0$. [/mm] Dann existiert ein [mm] $A_{n+1}\in\mathcal{A}$ [/mm] mit [mm] $A_n\subsetneq A_{n+1}$. [/mm]
Auf diese Weise erhalten wir eine Folge der gewünschten Art.

Aber hier lässt sich nicht so einfach mit dem Auswahlaxiom für Mengen argumentieren: Denn [mm] $\mathcal{A}$ [/mm] ist nun einmal nur als Klasse vorausgesetzt!

Kriegt jemand einen Beweis hin, ohne ein Auswahlaxiom für Klassen zu benötigen?


Viele Grüße
Tobias

        
Bezug
rekursive Def. mit Auswahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Sa 27.04.2013
Autor: tobit09

Hallo nochmal,


mir fällt gerade auf, dass mir noch nicht einmal ein Beweis einfällt, wenn wir das []Axiom of global choice annehmen.

Ich würde mich daher auch über einen Beweis mithilfe dieses Axioms freuen! :-)

(Wenn das Axiom tatsächlich impliziert, dass die Klasse $V$ aller Mengen wohlgeordnet werden kann, ist ein Beweis der Aussage aus dem Ausgangsposting mithilfe dieses Axioms natürlich nicht mehr schwer.)


Viele Grüße
Tobias

Bezug
                
Bezug
rekursive Def. mit Auswahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Sa 27.04.2013
Autor: tobit09

Jetzt ist mir doch noch ein Beweis eingefallen, dass jede Klasse wohlgeordnet werden kann, wenn Global Choice gilt. Somit ist ein Beweis meiner Aussage aus dem Ursprungsposting mittels Global Choice doch klar.

Weiterhin suche ich einen Beweis, der ohne Global Choice (also mit der üblichen naiven Mengenlehre oder den ZFC-Axiomen) auskommt!

Es darf gerne angenommen werden, dass die Klasse [mm] $\mathcal{A}$ [/mm] durch eine Formel definierbar ist.

Bezug
        
Bezug
rekursive Def. mit Auswahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:51 Mi 08.05.2013
Autor: tobit09

Hat sich erübrigt!

Ein Mengenlehre-Experte hat mir folgenden ZFC-Beweis verraten:


Eine Folgerung aus dem Fundierungsaxiom (von wegen "braucht man außerhalb der Mengenlehre nicht"...) ist ja, dass jede Menge in einem [mm] $V_\alpha$ [/mm] für eine Ordinalzahl [mm] $\alpha$ [/mm] liegt [mm] ($V_0:=\emptyset$, $V_{\alpha+1}:=\mathcal{P}(V_\alpha)$, $V_\lambda:=\bigcup_{\alpha<\lambda}V_\alpha$ [/mm] für Limesordinalzahlen [mm] $\lambda$). [/mm]

Sei für Ordinalzahlen [mm] $\alpha$ [/mm] die Menge [mm] $\mathcal{A}_\alpha$ [/mm] definiert durch

     [mm] $\mathcal{A}_\alpha:=\mathcal{A}\cap V_\alpha$. [/mm]

Wir konstruieren nun eine Folge [mm] $(\alpha_n)_{n\in\IN_0}$ [/mm] von Ordinalzahlen mit [mm] $\mathcal{A}_{\alpha_n}\not=\emptyset$ [/mm] rekursiv durch

     [mm] $\alpha_0:=$"kleinste [/mm] Ordinalzahl [mm] $\alpha$ [/mm] mit [mm] $\mathcal{A}_\alpha\not=\emptyset$" [/mm]
     [mm] $\alpha_{n+1}:=\sup_{A\in\mathcal{A}_{\alpha_n}}$"kleinste [/mm] Ordinalzahl [mm] $\alpha$, [/mm] für die ein [mm] $B\in\mathcal{A}_\alpha$ [/mm] mit [mm] $B\supsetneq [/mm] A$ existiert".

Sei [mm] $\alpha:=\sup_{n\in\IN_0}\alpha_n$. [/mm]

Mittels Auswahlaxiom existiert eine Wohlordnung $<$ von [mm] $\mathcal{A}_\alpha$. [/mm]

Nun definieren wir rekursiv:

     [mm] $A_0:=$"das [/mm] $<$-kleinste Element von [mm] $\mathcal{A}_{\alpha_0}$" [/mm]
     [mm] $A_{n+1}:=$"das [/mm] $<$-kleinste Element [mm] $B\in\mathcal{A}_{\alpha_{n+1}}$ [/mm] mit [mm] $B\supsetneq A_n$". [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]