matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenrekursive Folge, Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - rekursive Folge, Konvergenz
rekursive Folge, Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Folge, Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 14.04.2014
Autor: drossel

Hallo
ich will den Satz "Jede monotone (dh. entweder monoton wachsend oder momoton fallend), beschränkte Folge in [mm] \mathbb{R} [/mm] ist konvergent"
anwenden an einem Beispiel: [mm] a_1:=1, a_{n+1}:=\sqrt{1+a_n}, [/mm] die Konvergenz von [mm] (a_n) [/mm] möchte ich zeigen.
Wenn ich die ersten Folgenglieder mal ausrechne,
[mm] a_1=1, a_2=\sqrt{2}, a_3=\sqrt{1+\sqrt{2}} [/mm] ,.. erkennt man, dass sie wahrscheinlich monoton wachsend ist.
Ich muss hier zeigen, dass die Folge nach oben beschränkt ist und monoton wächst.
Meine erste Frage ist, ob ich auch begründen muss, dass die Folge nach unten beschränkt ist?
Beschränktheit heisst ja eigentlich nach oben und unten beschränkt. Aber wenn sie ja monoton wächst, irgendwo muss sie ja anfangen...

-Ich hab jetzt auch mal nach unten beschränkt, die Behauptung [mm] a_n\ge1 [/mm] für alle [mm] n\in \mathbb{N}, [/mm] gezeigt (versucht):
Induktionsanfang (IA) n=1:  [mm] a_1=1\ge [/mm] 1 ist wahr
Induktionsvoraussetzung (IV): Sei [mm] a_n\ge [/mm] 1 für beliebiges, aber festes [mm] n\in \mathbb{N} [/mm] bereits gezeigt
Induktionsschritt (IS) n->n+1: [mm] a_{n+1}=\sqrt{1+a_n}, [/mm] da [mm] a_n\ge [/mm] 1 nach IV, ist  [mm] a_{n+1}=\sqrt{1+a_n}\ge \sqrt{1+1}\ge [/mm] 1.

-Monoton steigend, zu zeigen: [mm] a_n\le a_{n+1} [/mm] für alle [mm] n\in \mathbb{N}: [/mm]
IA, n=1: [mm] a_1=1\le a_2=\sqrt{2} [/mm]
IV: Sei [mm] a_n\le a_{n+1} [/mm] für beliebiges, aber festes [mm] n\in \mathbb{N} [/mm] bereits gezeigt
IS, n->n+1: zu zeigen [mm] a_{n+1}\le a_{n+2} [/mm] für [mm] n\in \mathbb{N}: [/mm]
[mm] a_{n+2}=\sqrt{1+a_{n+1}} [/mm] nach IV [mm] \ge \sqrt{1+a_n}=a_{n+1}, n\in \mathbb{N}. [/mm]

Also [mm] (a_n) [/mm] nach unten beschränkt. Und [mm] (a_n) [/mm] monoton steigend, noch zu zeigen ist, dass [mm] (a_n) [/mm] nach oben beschränkt. Ist das bisher so ok ? Ich bin mir leider noch selbst nicht sicher..

Wie kann ich denn nach oben beschränkt zeigen bzw die obere Schranke herausfinden? Ich würde das jetzt so versuchen indem ich annehme, dass [mm] (a_n) [/mm]  gegen a konvergiert, dh. es muss gelten [mm] \limes_{n\rightarrow\infty}a_{n+1}=a=\sqrt{1+a} [/mm] und die Gleichung lösen [mm] a^2=1+a. [/mm] Erhalte die Nullstellen [mm] a'=\frac{1}{2}+\sqrt{\frac{5}{4}} [/mm] und [mm] a''=\frac{1}{2}-\sqrt{\frac{5}{4}} [/mm] und würde dann mein a' als obere Schranke nehmen und [mm] a_n\le \frac{1}{2}+\sqrt{\frac{5}{4}} [/mm] für alle [mm] n\in \mathbb{N} [/mm] wieder wie oben mit Induktion zeigen. Darf man das so machen?

Nach dem Satz wäre sie, weil beschränkt und monoton wachsende Folge in [mm] \mathbb{R}, [/mm] konvergent.

Liebe Grüße




        
Bezug
rekursive Folge, Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mo 14.04.2014
Autor: Sax

Hi,

Deine Ausführungen sind allesamt ganz ausgezeichnet.

Die Beschränktheit nach unten muss tatsächlich nicht gezeigt werden, denn der Satz funktioniert auch in der Form "Eine monoton wachsende und nach oben beschränkte Folge ...".

Dass die Wurzelfunktion monoton wachsend ist, kann bei den Ungleichungen ohne weitere Erwähnung eingesetzt werden.

> Wie kann ich denn nach oben beschränkt zeigen bzw die obere Schranke herausfinden? Ich würde das jetzt so versuchen indem ich annehme, dass $ [mm] (a_n) [/mm] $  gegen a konvergiert, dh. es muss gelten $ [mm] \limes_{n\rightarrow\infty}a_{n+1}=a=\sqrt{1+a} [/mm] $ und die Gleichung lösen $ [mm] a^2=1+a. [/mm] $ Erhalte die Nullstellen $ [mm] a'=\frac{1}{2}+\sqrt{\frac{5}{4}} [/mm] $ und $ [mm] a''=\frac{1}{2}-\sqrt{\frac{5}{4}} [/mm] $ und würde dann mein a' als obere Schranke nehmen und $ [mm] a_n\le \frac{1}{2}+\sqrt{\frac{5}{4}} [/mm] $ für alle $ [mm] n\in \mathbb{N} [/mm] $ wieder wie oben mit Induktion zeigen. Darf man das so machen?

Jeder macht das so, aber keiner verrät es.
Du lässt die Zahl a', von der du die Eigenschaft "obere Schranke" (durch Induktion) beweisen wirst, wie eine geniale Eingebung vom Himmel fallen und hütest dich, irgendjemandem zu verraten wie du darauf gekommen bist. Schließlich klappt der Beweis ja (übrigens viel besser als mit irgend einer anderen oberen Schranke (z.B. 10), die für den Satz ja auch ausreichen würde) und das ist Rechtfertigung genug.

Wenn dann also die Konvergenz gezeigt ist, kannst du ganz zum Schluss noch den Grenzwert ausrechnen, genau mit der Überlegung die du oben aufgeschrieben hast.

Gruß Sax.

Bezug
                
Bezug
rekursive Folge, Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:17 Di 15.04.2014
Autor: drossel

Hallo Sax, vielen Dank!
Oh stimmt, das wird aus dem Beweis des Satzes ersichtlich. Wenn man monoton steigend annimmt, dann funktioniert der Beweis mit dem Supremumsaxiom ( nichtleere nach oben beschränkte Teilmengen von [mm] \mathhhb{R} [/mm] besitzen ein Supremum. Also die Vollständigkeit von [mm] \mathbb{R}) [/mm] Bzw nach unten beschränkt bei monoton fallend. Danke. Oh stmmt, ich hätte ja auch irgendeine andere obere Schranke nehmen können ohne die Rechnung, aber wie du geschrieben hast macht man so eine Rechnung spätestens dann, wenn man den Grenzwert wirklich ausrechnen will. Danke.
Gruß

Bezug
        
Bezug
rekursive Folge, Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Di 15.04.2014
Autor: fred97


> Hallo
>  ich will den Satz "Jede monotone (dh. entweder monoton
> wachsend oder momoton fallend), beschränkte Folge in
> [mm]\mathbb{R}[/mm] ist konvergent"
>  anwenden an einem Beispiel: [mm]a_1:=1, a_{n+1}:=\sqrt{1+a_n},[/mm]
> die Konvergenz von [mm](a_n)[/mm] möchte ich zeigen.
>  Wenn ich die ersten Folgenglieder mal ausrechne,
> [mm]a_1=1, a_2=\sqrt{2}, a_3=\sqrt{1+\sqrt{2}}[/mm] ,.. erkennt man,
> dass sie wahrscheinlich monoton wachsend ist.
>  Ich muss hier zeigen, dass die Folge nach oben beschränkt
> ist und monoton wächst.
> Meine erste Frage ist, ob ich auch begründen muss, dass
> die Folge nach unten beschränkt ist?
>  Beschränktheit heisst ja eigentlich nach oben und unten
> beschränkt. Aber wenn sie ja monoton wächst, irgendwo
> muss sie ja anfangen...

Wenn Du gezeigt hast, dass [mm] (a_n) [/mm] wachsend ist, so ist doch

    [mm] a_1 \le a_n [/mm] für alle n [mm] \in \IN. [/mm]

Damit ist [mm] a_1 [/mm] eine untere Schranke von [mm] (a_n). [/mm]


>  
> -Ich hab jetzt auch mal nach unten beschränkt, die
> Behauptung [mm]a_n\ge1[/mm] für alle [mm]n\in \mathbb{N},[/mm] gezeigt
> (versucht):
>  Induktionsanfang (IA) n=1:  [mm]a_1=1\ge[/mm] 1 ist wahr
>  Induktionsvoraussetzung (IV): Sei [mm]a_n\ge[/mm] 1 für
> beliebiges, aber festes [mm]n\in \mathbb{N}[/mm] bereits gezeigt
>  Induktionsschritt (IS) n->n+1: [mm]a_{n+1}=\sqrt{1+a_n},[/mm] da
> [mm]a_n\ge[/mm] 1 nach IV, ist  [mm]a_{n+1}=\sqrt{1+a_n}\ge \sqrt{1+1}\ge[/mm]
> 1.
>  
> -Monoton steigend, zu zeigen: [mm]a_n\le a_{n+1}[/mm] für alle [mm]n\in \mathbb{N}:[/mm]
>  
> IA, n=1: [mm]a_1=1\le a_2=\sqrt{2}[/mm]
>  IV: Sei [mm]a_n\le a_{n+1}[/mm] für
> beliebiges, aber festes [mm]n\in \mathbb{N}[/mm] bereits gezeigt
>  IS, n->n+1: zu zeigen [mm]a_{n+1}\le a_{n+2}[/mm] für [mm]n\in \mathbb{N}:[/mm]
>  
> [mm]a_{n+2}=\sqrt{1+a_{n+1}}[/mm] nach IV [mm]\ge \sqrt{1+a_n}=a_{n+1}, n\in \mathbb{N}.[/mm]
>  
> Also [mm](a_n)[/mm] nach unten beschränkt. Und [mm](a_n)[/mm] monoton
> steigend, noch zu zeigen ist, dass [mm](a_n)[/mm] nach oben
> beschränkt. Ist das bisher so ok ? Ich bin mir leider noch
> selbst nicht sicher..
>
> Wie kann ich denn nach oben beschränkt zeigen bzw die
> obere Schranke herausfinden? Ich würde das jetzt so
> versuchen indem ich annehme, dass [mm](a_n)[/mm]  gegen a
> konvergiert, dh. es muss gelten
> [mm]\limes_{n\rightarrow\infty}a_{n+1}=a=\sqrt{1+a}[/mm] und die
> Gleichung lösen [mm]a^2=1+a.[/mm] Erhalte die Nullstellen
> [mm]a'=\frac{1}{2}+\sqrt{\frac{5}{4}}[/mm] und
> [mm]a''=\frac{1}{2}-\sqrt{\frac{5}{4}}[/mm] und würde dann mein a'
> als obere Schranke nehmen und [mm]a_n\le \frac{1}{2}+\sqrt{\frac{5}{4}}[/mm]
> für alle [mm]n\in \mathbb{N}[/mm] wieder wie oben mit Induktion
> zeigen. Darf man das so machen?

Dazu hat mein Vorredner schon etwas gesagt. mit Deinem obigen a' ist der Induktionsbeweis etwas unbequem.

Mach Dir klar, dass a' [mm] \le [/mm] 2 ist. Dann behaupten wir:

   [mm] a_n \le [/mm] 2 für alle n [mm] \in \IN. [/mm]

Der Induktionsschritt ist dann sehr bequem:

    [mm] a_{n+1}= \wurzel{1+a_n} \le \wurzel{1+2}= \wurzel{3} \le [/mm] 2.

FRED

>  
> Nach dem Satz wäre sie, weil beschränkt und monoton
> wachsende Folge in [mm]\mathbb{R},[/mm] konvergent.
>  
> Liebe Grüße
>  
>
>  


Bezug
                
Bezug
rekursive Folge, Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Di 15.04.2014
Autor: drossel

Hallo. Ah, ok danke.
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]