matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - ringe
ringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:05 Do 15.05.2008
Autor: christina84

Sind faktorielle Ringe gleich noethersche Ringe?

nach definition müssten sie gleich sein?

        
Bezug
ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Do 15.05.2008
Autor: felixf

Hallo Christina

Sind das wieder Fragen aus einem Pruefungsprotokoll? Schreib hier doch nicht einfach so Pruefungsfragen hin ohne irgendwelchen weiteren Text. Solche Fragen sind meist absichtlich sehr allgemein gehalten, um halt zu gucken wie der Pruefling darauf reagiert. Sprich: man kann Romane dazu schreiben.

Sag doch lieber ganz genau, was du dazu wissen willst.

> Sind faktorielle Ringe gleich noethersche Ringe?

Nein.

> nach definition müssten sie gleich sein?

Wie kommst du da drauf?

LG Felix


Bezug
                
Bezug
ringe: Verständnis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Do 15.05.2008
Autor: christina84

also in noetherschen integritätsringen ist jedes element ein produkt von k irreduziblen elementen.
das war keine Frage aus einem protokoll, nur für mein verständnis

dann müsste diese Folgerung richtig sein:
Euklidischer Ring folgt Hauptidealring folgt Faktorieller Ring genau dann wenn noetherscher Ring

ist das richtig???

Bezug
                        
Bezug
ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Do 15.05.2008
Autor: andreas

hi

> also in noetherschen integritätsringen ist jedes element
> ein produkt von k irreduziblen elementen.

das ist bestimmt nicht eure definition.


> dann müsste diese Folgerung richtig sein:
>  Euklidischer Ring folgt Hauptidealring folgt Faktorieller
> Ring

bis hierhin stimmt es.


> genau dann wenn noetherscher Ring
>  
> ist das richtig???

nein, das hat felix doch schon geschrieben (etwa ist [mm] $\mathbb{Z}[\sqrt{-5}]$ [/mm] noethersch, aber nicht faktoriell).


grüße
andreas


Bezug
                                
Bezug
ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Do 15.05.2008
Autor: felixf

Hallo

> > genau dann wenn noetherscher Ring
>  >  
> > ist das richtig???
>
> nein, das hat felix doch schon geschrieben (etwa ist
> [mm]\mathbb{Z}[\sqrt{-5}][/mm] noethersch, aber nicht faktoriell).

Und weiterhin ist ein Polynomring in unendlich vielen Unbestimmten ueber einem faktoriellen Ring auch faktoriell, aber nicht noethersch.

Und weiterhin gibt es viele noethersche Ringe, die keine Integritaetsbereiche sind, also gar keine Chance haben jemals faktoriell zu sein. Kleinstes Beispiel: [mm] $\IZ/4\IZ$ [/mm] oder allgemeiner jeder endliche Ring, der kein Koerper ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]