matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTechnikrobotikmathematik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Technik" - robotikmathematik
robotikmathematik < Technik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

robotikmathematik: lösen nach 3 Winkeln
Status: (Frage) beantwortet Status 
Datum: 13:48 Mi 15.06.2011
Autor: sanae

Ich möchte gern die 3 Winkeln lösen anhand dieser Matrix(4x1):q=(w,i,j,k). mit w,i,j,k sind zahlen.
q =[
cos(α/2) · cos(β/2) · cos(γ/2) + sin(α/2) · sin(β/2) · sin(γ/2)
cos(α/2) · cos(β/2) · sin(γ/2) − sin(α/2) · sin(β/2) · cos(γ/2)
cos(α/2) · sin(β/2) · cos(γ/2) + sin(α/2) · cos(β/2) · sin(γ/2)
sin(α/2) · cos(β/2) · cos(γ/2) − cos(α/2) · sin(β/2) · sin(γ/2) ]

man soll es mit hilfe von atan2 funktion lösen. hat jemanden eine idee.
danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
robotikmathematik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mi 15.06.2011
Autor: reverend

Hallo sanae, [willkommenmr]

Ich versuche erst einmal, die Aufgabe zu verstehen.

> Ich möchte gern die 3 Winkeln lösen anhand dieser
> Matrix(4x1):q=(w,i,j,k). mit w,i,j,k sind zahlen.
> q =[
>  cos(α/2) · cos(β/2) · cos(γ/2) + sin(α/2) ·
> sin(β/2) · sin(γ/2)
>  cos(α/2) · cos(β/2) · sin(γ/2) − sin(α/2) ·
> sin(β/2) · cos(γ/2)
>  cos(α/2) · sin(β/2) · cos(γ/2) + sin(α/2) ·
> cos(β/2) · sin(γ/2)
>  sin(α/2) · cos(β/2) · cos(γ/2) − cos(α/2) ·
> sin(β/2) · sin(γ/2) ]

Soll das also z.B. heißen: [mm] w=\cos{\bruch{\alpha}{2}}*\cos{\bruch{\beta}{2}}*\cos{\bruch{\gamma}{2}}+\sin{\bruch{\alpha}{2}}*\sin{\bruch{\beta}{2}}*\sin{\bruch{\gamma}{2}} [/mm] ?

Davon gibt es vier Gleichungen; die Werte von w,i,j,k sind gegeben, und Du suchst jetzt also [mm] \alpha, \beta, \gamma [/mm] ?

> man soll es mit hilfe von atan2 funktion lösen.

Was ist "atan2 funktion"? Und wer behauptet das?

> hat
> jemanden eine idee.

Ich bin nicht sicher, ob die Angaben überhaupt reichen, um die Winkel eindeutig zu bestimmen. Wahrscheinlich nicht.
Ansonsten würde ich mal nachsehen, ob vielleicht Additionstheoreme "rückwärts" anzuwenden sind, oder sonst versuchen, das nichtlineare Gleichungssystem noch irgendwie zu vereinfachen, z.B. durch Kombination von Zeilen.

Aber daran mache ich mich erst, wenn ich Deine Aufgabe richtig verstanden habe. Habe ich?

Grüße
reverend

PS: Nebenbei - was ist eigentlich Dein Ansatz? Den erwarten wir hier auch, lies mal die Forenregeln.


Bezug
                
Bezug
robotikmathematik: korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Mi 15.06.2011
Autor: sanae

Sie habe die Aufgabe richtig verstanden. meine idee ist  dass man die zeilen quadrieren und miteinander addieren um es zu verinfachen und die Atan2 funktion einsetzten zu können. also die rolle des atan2 ist : mit dem kann man dien winkel berchnen. Aber ich kommen nicht weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]