matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogiksat von rice menge der gödelnr
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - sat von rice menge der gödelnr
sat von rice menge der gödelnr < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sat von rice menge der gödelnr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Mi 07.02.2007
Autor: AriR

hey leute

müsste nach dem satz von rice die menge aller gödelnummern primitiv rekursiver funktionen nicht entscheidbar also nicht rekursiv sein?

wir haben in der vorlesung gezeigt, dass die die menge aller gödelnummern primtiv rekursiver funktionen wieder primitiv rekursiv ist, aber das ist doch ein widerspruch zum satz von rice oder nicht?

gruß ari

        
Bezug
sat von rice menge der gödelnr: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Do 08.02.2007
Autor: mathiash

Moin Ari,

erstmal ein Lob, Du machst Dir Gedanken, das ist gut so, wenn Du die Sachen so hinterfragst, wirst Du weiterkommen !

Zur Frage:

Was sagt der Satz von Rice genau ?

Nimm eine Teilmenge C von [mm] F_{\mu}, [/mm] der Menge der [mm] \mu [/mm] - rekursiven Funktionen mit
  
[mm] \emptyset\subsetneq C\subsetneq F_{\mu}. [/mm]

Dann ist die Menge

[mm] \{x|\:\varphi_x\in C\} [/mm]   nicht rekursiv entscheidbar.

Wenn Du [mm] C=F_{\prim} [/mm] betrachtest, ist zwar die Menge aller x, die primitiv-rekursive Herleitungen von [mm] f\in F_{prim} [/mm]
codieren, entscheidbar, aber es gibt ja zu [mm] f\in F_{prim} [/mm] auch Definitionen mit [mm] \mu-Operator, [/mm] und die
Menge

[mm] \{x|\:\varphi_x\in F_{prim} \} [/mm]

beinhaltet also sozusagen insbesondere auch das Entscheidungsproblem zu einem beliebigen x,
ob es zu [mm] f=\varphi_x [/mm] auch eine primitiv-rek. Herleitung gibt.

Also: Kein Widerspruch.  ;-)

Gruss,

Mathias

Bezug
                
Bezug
sat von rice menge der gödelnr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Do 08.02.2007
Autor: AriR

vielen dank schonmla für deine antwort,

wenn ich das richtige verstehe, beinhaltet die menge, die man betrachtet, um den satz von rice anzuwenden, mehr elemente, als wirlich nur die gödelnummern der primitiv rekursiven funktionen.

ich meine verstanden zu haben, dass das die funktionen sind, die mit dem [mm] \mu [/mm] operator definiert wurden.
aber diese sind ja gar nicht primitv rekursiv oder?

das wären dann ja gerade die [mm] \mu [/mm] partiellen funktionen, und wenn man sich die indizes dieser funktionen anschaut, kann man den satz von rice doch gar nicht anwenden.

ich denke mal ich hab dich irgendwie falsch verstanden +g+

siehst du irgendwo den verständnisfehler? :)

Gruß und nochmalls danke...


Bezug
                        
Bezug
sat von rice menge der gödelnr: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Fr 09.02.2007
Autor: mathiash

Moin Ari,

es gibt Funktionen, die primitiv rekursiv sind, die man aber auch mit dem [mm] \mu-Operator [/mm] definieren kann.

Gruss,

Mathias



Bezug
                                
Bezug
sat von rice menge der gödelnr: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:09 Fr 09.02.2007
Autor: AriR

aber nur mit dem beschränkten oder nicht? wenn man den unbeschränken nimmt, dann ist dies doch nicht mehr abgeschlossen in den prim. rek fkt oder?



Bezug
                                        
Bezug
sat von rice menge der gödelnr: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 14.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]