matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraschiefsymmetrische Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - schiefsymmetrische Abbildung
schiefsymmetrische Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schiefsymmetrische Abbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:53 So 02.07.2006
Autor: didi_160

Aufgabe
Zeigen Sie , dass die Abbildung    det : [mm] \IR^3 [/mm] x  [mm] \IR^3 [/mm] x  [mm] \IR^3 \to \IR, [/mm]
(x,y,z )  [mm] \mapsto [/mm] < x x y, z > ,    wobei  <,> das Standardskalarprodukt bezeichnet, schiefsymmetrisch  und trilinear ist.

Meine überlegungen zu der Aufgabe:

1. Ich bilde das Kreuzprodukt  der Vektoren:  
[mm] \vektor{x_1 \\ x_2\\x_3} [/mm] x [mm] \vektor{y_1 \\ y_2\\y_3} [/mm]  und erhalte [mm] \vektor{x_2y_3-x_3y_2 \\ x_3y_1-x_1y_\\x_1y_2-x_2y_1}. [/mm]
__________________________________________________
2. Jetzt bilde ich das Skalarprodukt:
[mm] \vektor{x_2y_3-x_3y_2 \\ x_3y_1-x_1y_\\x_1y_2-x_2y_1}* \vektor{z_1 \\z_2\\z_3} [/mm] unmd erhalte:
[mm] (x_2y_3-x_3y_2)*z_1 +(x_3y_1-x_1y_)*z_2 +(x_1y_2-x_2y_1)*z_3. [/mm]
_____________________________________________________-

In welche Bezeihung ich jetzt det : [mm] \IR^3 [/mm] x  [mm] \IR^3 [/mm] x  [mm] \IR^3 \to \IR, [/mm]  bringen muß, ist mir unklar.
Ebenfalls unklar ist mir, wie ich zeigen kann dass die Abbildung  "schiefsymmetrisch" und "trilinear " ist ????
______________________________________________________

Gibt es jemand der mir helfen kann? Muß die Lösung der Aufgabe morgen vorweisen. Besten Dank im Voraus.

Viele Grüße an dem sonnigen Sonntag Nachmittag!
did_160

        
Bezug
schiefsymmetrische Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 04.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]