matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionensenkr asymptoten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - senkr asymptoten
senkr asymptoten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

senkr asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Sa 31.05.2008
Autor: puldi


hallo,

wenn ich senkr. asymptote bestimmen soll, muss ich dann immer schauen, wo die funktion nicht definiert ist

also bei ln dann z.B ln = 0 setzen?

waagerechte asymptoten erhalte ich ja immer durch polynomdivison?!

Danke!


        
Bezug
senkr asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Sa 31.05.2008
Autor: Mathehelfer

Hi,

eine senkrechte Asymptote liegt immer dort vor, wo eine Polstelle ist . In den meisten Fällen ist diese dort, wo die Funktion nicht definiert ist (Definitionslücke). Es könnte aber auch sein, dass eine Definitionslücke nicht zugleich Polstelle ist; man spricht dann von einer stetig hebbaren Definitionslücke. Um herauszufinden, was von beiden vorliegt, gibt es folgende Verfahren:

1. Du schaust dir an, wie sich die Funktion an ihren Rändern (--> Definitionslücken) verhält. Strebt der Ausdruck (limes...) gegen Unendlich, also gegen einen uneigentlichen Grenzwert, handelt es sich um eine Polstelle. Je nachdem, wie links und rechts von der Def.-Lücke das Verhalten ist, spricht man von einer Polstelle mit / ohne Vorzeichenwechsel (VZW). Andernfalls liegt eine stetig hebbare Definitionslücke vor (bildlich: ein "Loch" im Graphen).

2. Du schreibst die Funktion in vollständig gekürzter Schreibweise auf und schaust, ob im Zähler UND im Nenner der Ausdruck "0" herauskommt, dann ist es eine stetig hebbare Def.-Lücke. Ist hingegen nur im Nenner das der Fall, ist es eine Polstelle --> senkrechte Asymptote. Du darfst jedoch nur soweit kürzen, dass der Definitionsbereich der Funktion bzgl. des ursprünglichen Terms nicht verändert wird!

Wie du richtig gesagt hattest, kannst du die Gleichung einer nicht senkrechten Asymptote durch Polynomdivision bestimmen, sofern die Funktion für +/- Unendlich gegen uneigentliche Werte strebt.

Beispiel für eine Funktion mit stetig hebbarer Definitionslücke ist:
[mm]f(x)=\bruch{x^2-2x}{x-2} =\bruch{x(x-2)}{x-2} \not= x[/mm]. Du darfst hier also das x-2 nicht kürzen, weil dadurch der ursprüngliche Definitionsbereich [mm]D= \IR \setminus \{ 2 \}[/mm] verändert werden würde. Zähler und Nenner liefern eingesetzt jeweils den Wert "0". Diese Funktion ist im Grunde genommen die Gerade mit f(x)=x, mit der Ausnahme, dass an der Stelle 2 ein Loch besteht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]