matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Mathematikstabile Menge & sein Polyeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - stabile Menge & sein Polyeder
stabile Menge & sein Polyeder < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stabile Menge & sein Polyeder: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:30 So 25.09.2011
Autor: student0815

Aufgabe
Sei [mm]P = \left \{ x \in \IR^n | x_i + x_j \leq 1, x_i \geq 0 , x_i \leq 1; \forall i=1,...,n \right \}[/mm] das zugehöriger Polyeder zum Problem der stabilen Menge. P' sei das zugehörige ganzzahlige Polyeder. ([mm]P' = conv (P \cap \IZ^n )[/mm] ).
Zeigen oder widerlegen Sie , ob die folgenden Ungleichungen für P oder P' gültig sind:
a.) [mm]x_i + x_j + x_k \leq 1[/mm]  
b.) [mm]x_i + x_j + x_k \geq 1[/mm]
c.) [mm]x_i + x_j - x_k \leq 1[/mm]


Hallo,
habe mir gerad mal Gedanken gemacht zum Thema Graphentheorie und ILP's und LP's.
Wenn man das Problem der stabilen Menge aus der Graphentheorie betrachtet, und in ein LP formuliert, sehe ich dass dann richtig, dass das POlyeder aussieht wie das des Standardsimplex???
aber nun zur wichtigeren Frage wegen den Ungelichungen a.) b.) und C.)
Meine Schätzung:
a.) Nein, die Ungleichung ist weder gültig für P, noch für P'.
b.) ja, die Ungleichung ist gültig für P und P'.
c.) Nein, für kein Polyeder gültig.

Sind die Aussagen so korrekt?
Wie kann man das beweisen, also bei Nein, klar durch gegenbeispiel aber b.) ??

Wäre dankbar für Hinweise.
Grüße
student



        
Bezug
stabile Menge & sein Polyeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Mo 26.09.2011
Autor: Stoecki

also mir sind deine indices nicht klar. das polytop der stabilen mengen hängt auch von den kanten ab. ich würde da also sowas wie [mm] x_i [/mm] + [mm] x_j \le [/mm] 1 für i [mm] \in [/mm] N(j) schreiben (N(i):= Nachbarschaftsmenge von i. geht man davon aus, dass diese nachbarschaftsrelationen gefordert sind, bzw. die ungleichungen nur dafür definiert sind, dann dürfen zwei benachbarte knoten nicht in der menge sein. wie sieht das dann für andere soummen wie denen da unten aus? zulässigkeit zeigst du, indem du eine ungleichung dann einfach für einen allgemeinen graphen durchspielst (stichwort fallunterscheidung)

Bezug
        
Bezug
stabile Menge & sein Polyeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Mo 26.09.2011
Autor: Stoecki

noch eine anmerkung. nein, das polyeder sieht nicht aus wie das standardsimplex. die leere menge ist eine stabile menge, aber der nullvektor ist kein element des polytops der stabilen mengen

Bezug
        
Bezug
stabile Menge & sein Polyeder: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 29.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]