matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungstammfunktion?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - stammfunktion?
stammfunktion? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stammfunktion?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:39 Di 16.01.2007
Autor: vikin

Hallo,

unswar komme ich bei folgenden Integralen wirklich nicht weiter, und wollte deshalb um Bitte bitten....:(

[mm] \bruch{1}{cos² 0.5x} [/mm]

und

[mm] \bruch{1}{x²+2x+2} [/mm]

Danke im voraus, für eure Hilfe

Mit freundlichem Gruß
viki

        
Bezug
stammfunktion?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Di 16.01.2007
Autor: thoma2

dazu übelegst du dir welche funk. abgeleitet so aussieht

tip: [mm] x^2+2x+2 [/mm] = [mm] (x+1)^2 [/mm] +1



Bezug
                
Bezug
stammfunktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Di 16.01.2007
Autor: vikin

Hallo,

danke, ich habe die funktion nun gerechnet, und auch geprüft.richtig:danke.

nur wie mache ich die erste funktion?

mfg
viki

Bezug
                        
Bezug
stammfunktion?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Di 16.01.2007
Autor: thoma2

heisst es [mm] cos^{2}(0.5x)? [/mm]
dann ist da kein trick bei.
einfach nochmal deine liste mit standartintegralen durchgehen

Bezug
                                
Bezug
stammfunktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Di 16.01.2007
Autor: vikin

hi,

ja genau so..., nur halt im Bruch...

Bezug
                                        
Bezug
stammfunktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mi 17.01.2007
Autor: Nansen

Hallo vikin,

Also zu Deinem zweiten Integral:  [mm] $\bruch{1}{x²+2x+2}$ [/mm] Hier hat thoma2 Dir ja schon einen Tipp gegeben. Du kannst Deinen Nenner schreiben als [mm] $(x^2+2x+1)+1 \gdw (x+1)^2 [/mm] + 1$
Vielleicht kommst Du nicht auf Anhieb auf den Trick, den man an der Stelle sehen muss, daher schaue Dir mal folgende Beziehung genau an:
$(arctan(q))' = [mm] \bruch{1}{q^2+1}$ [/mm]
Das q kann natürlich auch ein zusammengesetztert Ausdruck sein :-)

[mm] $\bruch{1}{cos² 0.5x} [/mm] $
Kennst Du die Ableitung von $tan(x)$? Wenn nein, dann leite sie Dir rasch her. Aber das sollte Dir einen Hinweis geben.

Viele Grüße :-)
Nansen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]