matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungstammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - stammfunktion
stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stammfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 30.06.2005
Autor: zinedine.rico

moin moin an alle
kann mir irgendjemand sagen, was die stammfunktion von [mm]e^\wurzel{x}[/mm]
ich krieg irgendwie absolut keinen ansatz hin, wäre schön, wenn mir jemand eine herleitung verraten würde
danke im voraus

        
Bezug
stammfunktion: Keine geschlossene Lösung!
Status: (Antwort) fertig Status 
Datum: 18:16 Do 30.06.2005
Autor: Loddar

Hallo Rico!


Meines Erachtens kannst Du an diesem Integral noch stunden-, tage- oder gar monatelang herumprobieren ... das wird nichts, da die Stammfunktion dieser Funktion nicht geschlossen bestimmbar ist.

Wenn Du nun ein bestimmtes Integral dieser Funktion berechnen möchtest, bleiben Dir wohl nur numerische Verfahren .


Gruß
Loddar


Bezug
                
Bezug
stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Do 30.06.2005
Autor: TranVanLuu

Also mein PC hat mir ein sehr schönes Ergebnis ausgespuckt.
Ich gebe es dir hier mal an, aber leider kann ich dir im Moment nicht bei dem Lösungsweg - und um den sollte es ja gehen - helfen. Vielleicht Substituieren z.b. u = [mm] \wurzel{x}..... [/mm]


Nachtrag: Dann sollte ich es vielleicht auch tun....: 2 [mm] e^{\wurzel{x}}*(\wurzel{x}-1)[/mm]

Bezug
                        
Bezug
stammfunktion: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:50 Do 30.06.2005
Autor: zinedine.rico

ich kann bestätigen, dass [mm]2e^{\wurzel{x}}(\wurzel{x}-1)[/mm] die richtige lösung ist, doch brauche ich immer noch eine herleitung, über die ableitung der oben genannten funktion komme ich zwar auf meine ausgangsgleichung aber wie kann ichs anders herum machen, es muss doch einen weg geben.
Ich habs auch über den Differentialquotienten versucht zu lösen, also [mm]\bruch{f(x_0+h)-f(x_0)}{h}[/mm] aber da komme ich auch nicht weiter
vielleicht kann mir doch noch jemand weiterhelfen
danke schonmal im voraus und an die schon gesandten antworten

Bezug
                                
Bezug
stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Do 30.06.2005
Autor: TranVanLuu

Hab grad nochmal Zeit gehabt, das nachzurechnen! Substituiere einfach [mm] \wurzel{x}=u [/mm]

mit [mm] \bruch{du}{dx}=\bruch{1}{2\wurzel{x}} [/mm]

[mm] \gdw [/mm] dx = 2 du  *u

kommst du ganz schnell ans Ziel, nur noch partiell integrieren und fertig!!

Gruß Tran

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]