matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisstark stetige Halbgruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - stark stetige Halbgruppen
stark stetige Halbgruppen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stark stetige Halbgruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:26 Sa 12.05.2018
Autor: questionpeter

Aufgabe
Sei T eine stark stetige Halbgruppe auf einem Banachraum X mit Generator (A,D(A)). Zeige, dass für [mm] x,y\in [/mm] X die folgenden Aussagen äquivalent sind.

(i) [mm] x\in [/mm] D(A)
(ii) für jedes [mm] t\geq0 [/mm] gilt

[mm] \integral_0^{t}{T(s)yds}=T(t)x-x [/mm]

Hallo zusammen,

mein Lösungsansatz:

[mm] (i)\Rightarrow(ii) [/mm] Sei [mm] x\in [/mm] D(A) und Ax=y. Dann ist

[mm] \integral_{0}^t{T(s)Axds}=T(t)x-x \overset{Ax=y}{\gdw} [/mm]
[mm] \integral_{0}^t{T(s)yds}=T(t)x-x [/mm]

[mm] (i)\Rightarrow [/mm] (ii)

Sei [mm] (x_n)_{n\in\IN} \subseteq [/mm] D(A) mit der Eigenschaft [mm] x_n\rightarrow [/mm] x und [mm] Ax_n\rightarrow [/mm] y in X. Dann ist

[mm] T(t)x_n-x_n=\integral_{0}^t{T(s)Ax_nds} [/mm]

Da [mm] T(t)\in [/mm] B(X), konvergiert die linke Seite für [mm] n\rightarrow \inftiy [/mm] gegen T(t)x-x in X. Da [mm] \underset{\sigma\in[0,t]}{sup} ||T(\sigma)Ax_n-T(\sigma)y|| \leq Me^{|\omega|t}||Ax_n-y|| [/mm]

konvergiert die Folge der stetigen FUnktionen [mm] T()Ax_n [/mm] gleichmässig auf [0,t] gegen die Funktion T()y und somit

[mm] \integral_{0}^t{T(s)x_nds}=\integral_{0}^t{T(s)yds} [/mm]

Es folgt, dass

[mm] \integral_{0}^t{T(s)yds}=T(t)x-x [/mm]


[mm] (ii)\Rightarrow [/mm] (i)

Es sei
[mm] \integral_{0}^t{T(s)yds}=T(t)x-x [/mm]

Durch Division durch [mm] t\geq [/mm] 0 ergibt

[mm] \bruch{T(t)-Id}{t}x=\bruch{1}{t}\integral_{0}^t{T(s)yds}\rightarrow [/mm] T(0)y=0

[mm] \Rightarrow x\in [/mm] D(A) und Ax=y

Stimmt das? Danke im voraus!

        
Bezug
stark stetige Halbgruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:38 Mo 14.05.2018
Autor: fred97


> Sei T eine stark stetige Halbgruppe auf einem Banachraum X
> mit Generator (A,D(A)). Zeige, dass für [mm]x,y\in[/mm] X die
> folgenden Aussagen äquivalent sind.
>  
> (i) [mm]x\in[/mm] D(A)
>  (ii) für jedes [mm]t\geq0[/mm] gilt
>  
> [mm]\integral_0^{t}{T(s)yds}=T(t)x-x[/mm]

Hmm ..., wie hängen denn x und y zusammen ???



>  Hallo zusammen,
>  
> mein Lösungsansatz:
>  
> [mm](i)\Rightarrow(ii)[/mm] Sei [mm]x\in[/mm] D(A) und Ax=y. Dann ist
>  
> [mm]\integral_{0}^t{T(s)Axds}=T(t)x-x \overset{Ax=y}{\gdw}[/mm]
>  
> [mm]\integral_{0}^t{T(s)yds}=T(t)x-x[/mm]
>  
> [mm](i)\Rightarrow[/mm] (ii)
>  
> Sei [mm](x_n)_{n\in\IN} \subseteq[/mm] D(A) mit der Eigenschaft
> [mm]x_n\rightarrow[/mm] x und [mm]Ax_n\rightarrow[/mm] y in X. Dann ist
>  
> [mm]T(t)x_n-x_n=\integral_{0}^t{T(s)Ax_nds}[/mm]
>  
> Da [mm]T(t)\in[/mm] B(X), konvergiert die linke Seite für
> [mm]n\rightarrow \inftiy[/mm] gegen T(t)x-x in X. Da
> [mm]\underset{\sigma\in[0,t]}{sup} ||T(\sigma)Ax_n-T(\sigma)y|| \leq Me^{|\omega|t}||Ax_n-y||[/mm]
>  
> konvergiert die Folge der stetigen FUnktionen [mm]T()Ax_n[/mm]
> gleichmässig auf [0,t] gegen die Funktion T()y und somit
>
> [mm]\integral_{0}^t{T(s)x_nds}=\integral_{0}^t{T(s)yds}[/mm]
>  
> Es folgt, dass
>  
> [mm]\integral_{0}^t{T(s)yds}=T(t)x-x[/mm]
>  
>
> [mm](ii)\Rightarrow[/mm] (i)
>  
> Es sei
>  [mm]\integral_{0}^t{T(s)yds}=T(t)x-x[/mm]
>  
> Durch Division durch [mm]t\geq[/mm] 0 ergibt
>
> [mm]\bruch{T(t)-Id}{t}x=\bruch{1}{t}\integral_{0}^t{T(s)yds}\rightarrow[/mm]
> T(0)y=0
>  
> [mm]\Rightarrow x\in[/mm] D(A) und Ax=y
>  
> Stimmt das? Danke im voraus!


Bezug
        
Bezug
stark stetige Halbgruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 15.05.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]