matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionensteigung im kurvenpunkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - steigung im kurvenpunkt
steigung im kurvenpunkt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

steigung im kurvenpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Do 05.02.2009
Autor: isabell_88

Aufgabe
a)
An die Funktion [mm] f:x\to x^{3} [/mm] ist im Punkt P(1/1) die tangente an die kurve zu legen.

b)die tangente hat mit der kurve noch einen weiteren schnittpunkt. Bestimmen Sie ihn.
Anleitung: lösen Sie die entstehende gleichung durch raten.

a)ich hab ausgerechnet, dass die steigung der kurve im punkt (1/1) 3 beträgt, weiß aber nicht, wie ich den winkel finde, in dem ich die tangente an die kurve lege.

b)
die tangente schneidet die kurve wahrscheinlich noch einmal bei (-x/ -y), ich würde tippen bei (-1/-1) weil die kurve symmetrisch zum ursprung ist.
allerdings verstehe ich dabei die anleitung nicht. Was meinen die denn mit "entstehende gleichung"?
Wie bestimme ich  den punkt?

ich danke schon im voraus.


        
Bezug
steigung im kurvenpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Do 05.02.2009
Autor: schachuzipus

Hallo isabell_88,

> a)
>  An die Funktion [mm]f:x\to x^{3}[/mm] ist im Punkt P(1/1) die
> tangente an die kurve zu legen.
>  
> b)die tangente hat mit der kurve noch einen weiteren
> schnittpunkt. Bestimmen Sie ihn.
> Anleitung: lösen Sie die entstehende gleichung durch
> raten.
>  
> a)ich hab ausgerechnet, dass die steigung der kurve im
> punkt (1/1) 3 beträgt, [ok] weiß aber nicht, wie ich den winkel
> finde, in dem ich die tangente an die kurve lege.

Den Winkel brauchst du doch nicht, du hast die Steigung der Tangente berechnet und einen Punkt $P=(1/1)$ auf der Tangente gegeben

Tangentengleichung [mm] $y=m\cdot{}x+b$ [/mm]

$m$ hast du berechnet, $b$ bekommst du, wenn du $P=(x/y)=(1/1)$ in die Tangentengleichung einsetzt

>  
> b)
>  die tangente schneidet die kurve wahrscheinlich noch
> einmal bei (-x/ -y), ich würde tippen bei (-1/-1) weil die
> kurve symmetrisch zum ursprung ist.
>  allerdings verstehe ich dabei die anleitung nicht. Was
> meinen die denn mit "entstehende gleichung"?
>  Wie bestimme ich  den punkt?

Wenn du die Tangentengleichung berechnet hast, setze sie mit der Funktionsgleichung gleich.

Einen gemeinsamen Punkt, nämlich $P=(1/1)$ kennst du ja schon ...

>  
> ich danke schon im voraus.
>  

LG

schachuzipus

Bezug
                
Bezug
steigung im kurvenpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 05.02.2009
Autor: isabell_88

$ [mm] y=m\cdot{}x+b [/mm] $
[mm] 1=3\cdot1+b [/mm]
b=-2

zu b)

[mm] x^{3}=3\cdot1-2 [/mm]

und was hab ich nun davon?
da kommt doch wieder 1 raus....?

Bezug
                        
Bezug
steigung im kurvenpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Do 05.02.2009
Autor: M.Rex

Hallo

> [mm]y=m\cdot{}x+b[/mm]
>  [mm]1=3\cdot1+b[/mm]
>  b=-2

Das heißt doch, die Tangente ist die Gerade t(x)=3x-2

>  
> zu b)
>  
> [mm]x^{3}=3\cdot1-2[/mm]
>  
> und was hab ich nun davon?
>  da kommt doch wieder 1 raus....?


Jetzt sollst du die Schnittpunkte von t(x) und f(x) bestimmen.

Also t(x)=f(x)
[mm] \gdw [/mm] 3x-2=x³
[mm] \gdw [/mm] x³-3x+2=0

Das ist ohne weiteres nicht lösbar, du weist aber, dass sich t(x) und f(x)bei x=1 schneiden berühren, also hast du schonmal eine Schnittstelle.
Dann mache doch mal die Polynomdivision [mm] (x³+0x²-3x+2):(x\red{-}1)=\Box [/mm]

[mm] \Box [/mm] ist nun eine quadratische Funktion, deren Nullstellen du dann mit der p-q-Formel bestimmen kannst, um die weiteren Schnittstellen von t und f zu bekommen.

Die y-Koordinate der Schnittpunkte bekommst du dann, wenn du die Schnittstellen in t oder f einsetzt

Marius

Bezug
                                
Bezug
steigung im kurvenpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Do 05.02.2009
Autor: isabell_88

$ [mm] (x³+0x²-3x+2):(x\red{-}1) [/mm] $ [mm] =x^{2}+x-2 [/mm]

nach der p/q formel
[mm] x^{2}+x-2=0 [/mm]

ergibt sich:
x1=1
x2=-2

was muss ich damit jetzt genau machen?

Bezug
                                        
Bezug
steigung im kurvenpunkt: Funktionswerte berechnen
Status: (Antwort) fertig Status 
Datum: 13:37 Do 05.02.2009
Autor: Roadrunner

Hallo isabell!


Du hast nun neben [mm] $x_1 [/mm] \ = \ 1$ die 2. Schnittstelle bei [mm] $x_2 [/mm] \ = \ -2$ berechnet.

Um einen Schnittpunkt zu erhalten, musst Du nunmehr den zugehörigen Funktionswert [mm] $y_2 [/mm] \ = \ f(-2) \ = \ ...$ ermitteln.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
steigung im kurvenpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 05.02.2009
Autor: isabell_88

ach so, dann ist die 2. schnittstelle bei (-2/-8)

ich danke euch sehr

Bezug
                                                        
Bezug
steigung im kurvenpunkt: richtig
Status: (Antwort) fertig Status 
Datum: 13:40 Do 05.02.2009
Autor: Roadrunner

Hallo isabell!


[ok]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]