matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesstetig/ Fixpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - stetig/ Fixpunkt
stetig/ Fixpunkt < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig/ Fixpunkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:40 Fr 26.09.2008
Autor: crazyhuts1

Aufgabe
1)
a) Folgern Sie mit dem Zwischenwertsatz: Eine stetige Funktion, die das kompakte Intervall (a,b) in sich abbildet, hat in (a,b) einen Fixpunkt.

b) Zeigen Sie: Ist die Funktion f: [mm] (a,b)\to [/mm] R kontraktiv auf (a,b), so ist sie auf (a,b) stetig.

Hallo,

also, ich habe von dieser Aufgabe zwar die Lösung, aber die verstehe ich überhaupt nicht... vielleicht kann mir jemand mal einen Tipp geben, wie man an so etwas überhaupt herangehen könnte. Stetig bedeutet ja, dass wenn sich [mm] x_{2} [/mm] meinetwegen an [mm] x_{1} [/mm] annähert, sich auch [mm] f(x_{2}) [/mm] an [mm] f(x_{1}) [/mm] annähert, oder??
Aber was hat das mit meinen Fixpunkten zu tun, für die doch gelten muss etwa: [mm] f(x_{3})=x_{3}?? [/mm]

Viele Grüße,
Anna

        
Bezug
stetig/ Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Fr 26.09.2008
Autor: ArthurDayne

Hallo!

Zuerst einmal ist (a,b) kein kompaktes Intervall, sondern es muss [a,b] heißen. Bei der ersten Aufgabe würde dir sicher ein kleines Bild sehr helfen:
Zeichne ein Koordinatensystem (der 1. Quadrant reicht aus) und dann a und b auf der x- sowie y-Achse ein. Die Geraden x=a, x=b, y=a und y=b begrenzen damit ein Quadrat im Koordinatensystem.
Überlege dir nun, was es bedeutet, dass die Funktion das Intervall [a,b] in sich abbildet.
Dass eine Funktion auf dem Intervall [a,b] einen Fixpunkt hat, bedeutet anschaulich nichts anderes, als dass sie dort eine Schnittstelle mit der Funktion $g: [mm] [a,b]\to[a,b]\subseteq\mathds{R},\,g(x)=x$ [/mm] hat. Diese zeichnest du am besten auch noch ein. Das könnte dir helfen, die Aufgabe zu verstehen :-)
Stetigkeit in diesem Zusammenhang bedeutet, dass f die Gerade g(x)=x nicht einfach "überspringen" kann und somit einen Schnittpunkt vermeidet.

Gruß
Johannes

Bezug
                
Bezug
stetig/ Fixpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Sa 27.09.2008
Autor: pelzig

Ich denke bei Aufgabe b) geht es eher darum, dass Kontraktionen nach Definition Lipschitz-Stetig sind. Damit sind sie erst recht stetig.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]