matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungstetige funktionenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - stetige funktionenen
stetige funktionenen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige funktionenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 07.04.2008
Autor: puldi

Hallo,

woher weiß ich ob eine funktion stetig ist?

"Stetige Funktionen auf einem abgeschlossenen Intervall sind integrierbar"

sign ist ja nicht stetig? Also ist die Signumfunktion nur von [-unendlich bis 0] und von [0; bis unendlich ] integrierbar?

Stimmt das?

Und warum ist das abgeschlossenen Intervall so wichtig?

Danke (schreibe morgen eine Mathearbeit --> Panik)

        
Bezug
stetige funktionenen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 07.04.2008
Autor: straussy

Hi,

es gibt das [mm]\epsilon-\delta[/mm]-Kriterium der Stetigkeit. Dh. eine Funktion ist genau dann auf U stetig wenn [mm]\forall x,x'\in U[/mm] und [mm]\forall\epsilon>0[/mm] ein [mm]\delta>0[/mm]  existiert, so dass aus [mm]|x-x'|<\delta[/mm] folgt, dass [mm]||f(x)-f(x')||<\epsilon[/mm].

Einfacher (und sehr umgangssprachlich) formuliert, wenn du eine Funktion durchzeichnen kannst, ist sie stetig.

Die Funktion [mm]f(x)=|x|[/mm] ist stetig, das ist richtig. Aber das Intervall [mm](-\infty,0)[/mm] ist nicht abgeschlossen. Deshalb ist die Funktion nicht über diesem Intervall integrierbar.
Der Wert wäre "[mm]\infty[/mm]", das ist aber keine reelle Zahl.

LG, Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]