stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:25 Sa 07.07.2007 | Autor: | bjoern.g |
Aufgabe | f(x) = [mm] \bruch{x²+1}{\wurzel{4-x²}}
[/mm]
soll angegeben werden ob diese fkt. stetig ist .....
|
hi hab eine frage dazu:
also 1 Defenitionsbereich liegt ]-2;2[
stetigkeit hätt ich jetzt so versucht ... läuft ja oben und unten gegen unendlich also L'hospital
ergebnis [mm] \bruch{2x+1}{x*\bruch{1}{\wurzel{4-x}}} [/mm] (kann man natürlich noch umschreiben)
dann 2 eingesetzt (da 2 im nenner vorher null gab) bekäm ich irgendwas mit 3,52 raus ( als grenzwert )
so für stetigkeit muss doch grenzwert = der fktwert sein richtig?
muss ich mich dann auch nochmal von (-) ännähern also linke seite?
praktisch [mm] \bruch{"-"x²+1}{\wurzel{4-x²}} [/mm] und dann grenzwert bestimmen und 2 einsetzen?
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:28 Sa 07.07.2007 | Autor: | bjoern.g |
hi hab eine frage dazu:
also 1 Defenitionsbereich liegt ]-2;2[
stetigkeit hätt ich jetzt so versucht ... läuft ja oben und unten gegen unendlich also L'hospital
ergebnis [mm] \bruch{2x+1}{x*\bruch{1}{\wurzel{4-x}}} [/mm] (kann man natürlich noch umschreiben)
dann 2 eingesetzt (da 2 im nenner vorher null gab) bekäm ich irgendwas mit 3,52 raus ( als grenzwert )
so für stetigkeit muss doch grenzwert = der fktwert sein richtig?
muss ich mich dann auch nochmal von (-) ännähern also linke seite?
praktisch [mm] \bruch{-x²+1}{\wurzel{4-x²}} [/mm] und dann grenzwert bestimmen und 2 einsetzen?
sorry hatte oben einen fehler drin :(
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:32 Sa 07.07.2007 | Autor: | bjoern.g |
Aufgabe
f(x) = [mm] \bruch{x²+1}{\wurzel{4-x²}} [/mm]
soll angegeben werden ob diese fkt. stetig ist .....
"ursprüngliche aufgabe" nochmal sorry wegen den posts
nächste mal direkt vorschau ^^
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:57 Sa 07.07.2007 | Autor: | leduart |
Hallo björn
in ihrem definitionsbereich ist die fkt stetig. am Rande also [mm] x=\pm2 [/mm] sicher nicht, sie kann auch nicht stetig ergänzt werden, da der Zähler ja ganz brav da 5 wäre, der Nenner gegen 0 geht.
Dann kannst du auch nicht L'Hopital anwenden. wie kommst du auf die Idee dass Z und N gegen 0 oder [mm] \infty [/mm] laufen?
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:15 Sa 07.07.2007 | Autor: | bjoern.g |
verdammt ich weis immer noch nicht wie ich das richtig bestimme....
wie siehst du das denn
kanst du mir das bitte nochmal zeigen ich brauch das unbedingt
wär super nett danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:33 Sa 07.07.2007 | Autor: | leduart |
Hallo
1. du hast ja schon richtig gesehen, das |x|<2 gelten muss.
ob du innerhalb des def. Gebietes die stetigkeit beweisen sollst oder nicht kann ich nicht beurteilen. Oder ob du die Sätze über Komposition von stetigen Fkt. benutzen darfst.
Da die [mm] \pm2 [/mm] ausserhalb des Def.Gebietes liegen, muss man da eigentlich gar nix sagen, denn man spricht von einer fkt nur IN ihrem Def.Geb.
Wenn die Frage ist, ob man sie am Rande stetig ergänzen kann musst du sie genauer ansehen.
Nachdem du gesehen hast, dass der Nenner 0 Wird für x=2 untersuchst du den Zähler, indem du 2 einsetzt. wenn der dan ne Zahl ist und der Nener gegen 0 geht kannst du nicht stetig ergänzen. wenn er auch 0 wäre, oben also etwa statt [mm] x^2+1 [/mm] stünde (x-2)*(x-3)
gibt es ne Chance, dass du stetig ergänzen kannst;
und zwar bei x=+2.
also versuch mal ob du die fkt
[mm] $f(x)=\bruch{x^2-5x+6}{\wurzel{4-x^2}}$ [/mm]
bei x=2 stetig ergänzen kannst. und was ist bie x=-2?
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:39 Sa 07.07.2007 | Autor: | bjoern.g |
ah oki ja also bei -2 gehts nicht da kommt beim zähler eine 12 raus!
also geht es definitiv nicht ! stimmt das so?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:44 Sa 07.07.2007 | Autor: | leduart |
Hallo
bei -2 hast du recht.
was ist bei +2?
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:09 Sa 07.07.2007 | Autor: | bjoern.g |
bei +2 wird er null
also da wäre er behebbar aber an der stelle -2 ist es nicht stetig
ok denke das hab ich gerallt ;)
aber jetzt hab ich hier noch so ne alte klausur aufgabe....
In dieser Aufgabe betrachten wir die Funktion f(x) = x2 · sin(1/x)
Ihr Definitionsbereich ist
D = R \ {0}
(c) Zeigen Sie, dass die Funktion f stetig nach 0 fortgesetzt werden kann. Die stetig fort
gesetzte Funktion sei mit g bezeichnet (d.h. es gilt g(x) = f(x) für x [mm] \not= [/mm] 0). Geben Sie
den Wert g(0) an.
(d) Entscheiden Sie, ob g(x) an der Stelle 0 differenzierbar ist. Falls ja, geben Sie g'(0) an.
(e) Geben Sie alle x R an, für die die Funktion g(x) stetig differenzierbar ist
.
da weis ich gar nicht wie ich da vorgehen soll :(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:22 Sa 07.07.2007 | Autor: | leduart |
Hallo
> bei +2 wird er null
>
> also da wäre er behebbar aber an der stelle -2 ist es nicht
> stetig
>
>
> ok denke das hab ich gerallt ;)
nein, so einfach ists nicht. du musst Zeigen dass es hebbar ist. f(x)=x/x z, Bsp kann man bei der nicht def. Stelle x=0 stetig ergänzen durch f(0)=1
[mm] f(x)=x/x^2 [/mm] kann man bei x=0 NICHT stetig ergänzen usw. ausserdem musst du angeben, durch was du -wenn möglich- f(2) eergänzt.
>
> aber jetzt hab ich hier noch so ne alte klausur
> aufgabe....
>
> In dieser Aufgabe betrachten wir die Funktion f(x) = x2 ·
> sin(1/x)
> Ihr Definitionsbereich ist
> D = R \ {0}
>
> (c) Zeigen Sie, dass die Funktion f stetig nach 0
> fortgesetzt werden kann. Die stetig fort
> gesetzte Funktion sei mit g bezeichnet (d.h. es gilt g(x)
> = f(x) für x [mm]\not=[/mm] 0). Geben Sie
> den Wert g(0) an.
g(0)=0 und jetzt musst du zeigen, dass es zu jedem [mm] \vareosilon>0 [/mm] ein [mm] \delta [/mm] gibt, so dass [mm] |x^2*sin1/x-0|
dann erstmal g'(x) für [mm] x\ne0 [/mm] bilden und dann überlegen ob das auch noch bei x=0 geht. ähnlich wie in a.
Gruss leduart
|
|
|
|