matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetigkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - stetigkeit zeigen
stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Di 19.01.2010
Autor: deniz87

Hallo zusammen,
Und zwar heißt eine Abbildung [mm] h:\IR^n\times\IR^m\to\IR^k [/mm] bilinear, falls für alle [mm] x_{1},x_{2}\in\IR^n, y_{1},y_{2}\in\IR^m [/mm] und [mm] a_{1},a_{2},b_{1},b_{2}\in\IR [/mm] gilt
[mm] h(a_{1}x_{1}+a_{2}x_{2},y_{1}) [/mm] = [mm] a_{1} h(x_{1},y_{1})+a_{2} h(x_{2},y_{1}) [/mm] und
[mm] h(x_{1},b_{1} y_{1}+b_{2}y_{2}) =b_{1} h(x_{1},y_{1})+b_{2} h(x_{1},y_{2}) [/mm]
Z. Z ist nun dass solche bilineare Abbildungen immer stetig sind. Könnt ihr mir sagen, wie man an solch eine Aufgabe am besten rangeht? Beweist man die Setigkeit mit der [mm] \varepsilon-\delta [/mm] Defnition. oder ganz anders?
Viele Grüße
deniz

        
Bezug
stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 So 24.01.2010
Autor: uliweil

Hallo deniz,

zunächst weiß man ja, dass es reicht zu zeigen, dass alle Komponentenfunktionen stetig sind, also die k-vielen Abbildungen in den [mm] \IR. [/mm]
Natürlich ist jede der Komponentenfunktionen wieder bilinear, somit reduziert sich die Aufgabenstellung auf bilineare Funktionen vom [mm] \IR^{n} [/mm] x [mm] \IR^{m}->\IR. [/mm]
Jetzt läßt sich neben dem [mm] \varepsilon [/mm] - [mm] \delta [/mm] Kriterium vielleicht einfacher das Folgenkriterum anwenden. Wenn also [mm] x^{i} [/mm] -> x (Folgenindex i oben), dann auch [mm] (x_{n},x_{m})^{i} [/mm] -> x und auch [mm] (x_{n}^{i},x_{m}^{i}) [/mm] -> [mm] (x_{n},x_{m}). [/mm] Betrachtet man nun [mm] f(x^{i}) [/mm] - f(x) läßt sich dies aufgrund der Bilinearität in [mm] f(x_{n}^{i} [/mm] - [mm] x_{n}, x_{m}^{i} [/mm] - [mm] x_{m}) [/mm] umformen. Ich denke dann ist der Schluß nicht mehr fern.

Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]